一、内存映射是一个很有趣的思想,我们都知道操作系统分为用户态和内核态,用户态是不能直接和物理设备打交道,如果我们用户空间想访问硬盘的一块区域数据,则需要两次拷贝(硬盘->内核->用户),但是内存映射的设计只需要发生一次拷贝,大大提高了读取数据的效率。
二、内存映射如下图:
三、mmap()必须以PAGE_SIZE为单位进行映射,而内存也只能以页为单位进行映射,若要映射非PAGE_SIZE整数倍的地址范围,要先进行内存对齐,强行以PAGE_SIZE的倍数大小进行映射。
参数说明:
start:映射区的开始地址,设置为0时表示由系统决定映射区的起始地址。
length:映射区的长度。//长度单位是 以字节为单位,不足一内存页按一内存页处理
prot:期望的内存保护标志,不能与文件的打开模式冲突。是以下的某个值,可以通过or运算合理地组合在一起
PROT_EXEC: 表示映射的页面是可以执行的
PROT_READ:表示映射的页面是可以读取的
PROT_WRITE :表示映射的页面是可以写入的
PROT_NONE :表示映射的页面是不可访问的
flags:指定映射对象的类型,映射选项和映射页是否可以共享。它的值可以是一个或者多个以下位的组合体
MAP_SHARED:创建一个共享映射的区域,多个进程可以通过共享映射的方式来映射一个文件,这样其他进程也可以看到映射内容的改变,修改后的内容会同步到磁盘文件
MAP_PRIVATE:创建一个私有的写时复制的映射,多个进程可以通过私有映射方式来映射一个文件,其他的进程不会看到映射文件内容的改变,修改后也不会同步到磁盘中
MAP_ANONYMOUS:创建一个匿名映射,即没有关联到文件的映射
MAP_FIXED:
MAP_POPULATE:提前遇到文件内容到映射区
fd:mmap映射释放和文件相关联,可以分为匿名映射和文件映射
文件映射:将一个普通文件的全部或者一部分映射到进程的虚拟内存中。映射后,进程就可以直接在对应的内存区域操作文件内容!
匿名映射:匿名映射没有对应的文件或者对应的文件时虚拟文件(如:/dev/zero),映射后会把内存分页全部初始化为0。
offset:被映射对象内容的起点
四、查看 mmap 的系统调用的代码实现,其流程为 sys_mmp_pg_off(),最终会调用达到 do_mmap_pgoff,该函数使一个体系结构无关的代码,定义在 mm/mmap.c 中,
首先我们来看看 do_mmap(),是整个 mmap() 的具体操作函数
unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flags, vm_flags_t vm_flags,
unsigned long pgoff, unsigned long *populate)
{
struct mm_struct *mm = current->mm; //获取该进程的memory descriptor
int pkey = 0;
*populate = 0;
//函数对传入的参数进行一系列检查, 假如任一参数出错,都会返回一个errno
if (!len)
return -EINVAL;
/*
* Does the application expect PROT_READ to imply PROT_EXEC?
*
* (the exception is when the underlying filesystem is noexec
* mounted, in which case we dont add PROT_EXEC.)
*/
if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
if (!(file && path_noexec(&file->f_path)))
prot |= PROT_EXEC;
//假如没有设置MAP_FIXED标志,且addr小于mmap_min_addr, 因为可以修改addr, 所以就需要将addr设为mmap_min_addr的页对齐后的地址
if (!(flags & MAP_FIXED))
addr = round_hint_to_min(addr);
/* Careful about overflows.. */
len = PAGE_ALIGN(len); //进行Page大小的对齐
if (!len)
return -ENOMEM;
/* offset overflow? */
if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
return -EOVERFLOW;
/* Too many mappings? */
if (mm->map_count > sysctl_max_map_count) //判断该进程的地址空间的虚拟区间数量是否超过了限制
return -ENOMEM;
//get_unmapped_area从当前进程的用户空间获取一个未被映射区间的起始地址
addr = get_unmapped_area(file, addr, len, pgoff, flags);
if (offset_in_page(addr)) //检查addr是否有效
return addr;
if (prot == PROT_EXEC) {
pkey = execute_only_pkey(mm);
if (pkey < 0)
pkey = 0;
}
/* Do simple checking here so the lower-level routines won't have
* to. we assume access permissions have been handled by the open
* of the memory object, so we don't do any here.
*/
vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
//假如flags设置MAP_LOCKED,即类似于mlock()将申请的地址空间锁定在内存中, 检查是否可以进行lock
if (flags & MAP_LOCKED)
if (!can_do_mlock())
return -EPERM;
if (mlock_future_check(mm, vm_flags, len))
return -EAGAIN;
if (file) { // file指针不为nullptr, 即从文件到虚拟空间的映射
struct inode *inode = file_inode(file); //获取文件的inode
switch (flags & MAP_TYPE) { //根据标志指定的map种类,把为文件设置的访问权考虑进去
case MAP_SHARED:
if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
return -EACCES;
/*
* Make sure we don't allow writing to an append-only
* file..
*/
if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
return -EACCES;
/*
* Make sure there are no mandatory locks on the file.
*/
if (locks_verify_locked(file))
return -EAGAIN;
vm_flags |= VM_SHARED | VM_MAYSHARE;
if (!(file->f_mode & FMODE_WRITE))
vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
/* fall through */
case MAP_PRIVATE:
if (!(file->f_mode & FMODE_READ))
return -EACCES;
if (path_noexec(&file->f_path)) {
if (vm_flags & VM_EXEC)
return -EPERM;
vm_flags &= ~VM_MAYEXEC;
}
if (!file->f_op->mmap)
return -ENODEV;
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
return -EINVAL;
break;
default:
return -EINVAL;
}
} else {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
return -EINVAL;
/*
* Ignore pgoff.
*/
pgoff = 0;
vm_flags |= VM_SHARED | VM_MAYSHARE;
break;
case MAP_PRIVATE:
/*
* Set pgoff according to addr for anon_vma.
*/
pgoff = addr >> PAGE_SHIFT;
break;
default:
return -EINVAL;
}
}
/*
* Set 'VM_NORESERVE' if we should not account for the
* memory use of this mapping.
*/
if (flags & MAP_NORESERVE) {
/* We honor MAP_NORESERVE if allowed to overcommit */
if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
vm_flags |= VM_NORESERVE;
/* hugetlb applies strict overcommit unless MAP_NORESERVE */
if (file && is_file_hugepages(file))
vm_flags |= VM_NORESERVE;
}
//一顿检查和配置,调用核心的代码mmap_region
addr = mmap_region(file, addr, len, vm_flags, pgoff);
if (!IS_ERR_VALUE(addr) &&
((vm_flags & VM_LOCKED) ||
(flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
*populate = len;
return addr;
}
do_mmap() 根据用户传入的参数做了一系列的检查,然后根据参数初始化 vm_area_struct 的标志 vm_flags,vma->vm_file = get_file(file) 建立文件与vma的映射, mmap_region() 负责创建虚拟内存区域:
unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
{
struct mm_struct *mm = current->mm; //获取该进程的memory descriptor
struct vm_area_struct *vma, *prev;
int error;
struct rb_node **rb_link, *rb_parent;
unsigned long charged = 0;
/* 检查申请的虚拟内存空间是否超过了限制 */
if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
unsigned long nr_pages;
/*
* MAP_FIXED may remove pages of mappings that intersects with
* requested mapping. Account for the pages it would unmap.
*/
nr_pages = count_vma_pages_range(mm, addr, addr + len);
if (!may_expand_vm(mm, vm_flags,
(len >> PAGE_SHIFT) - nr_pages))
return -ENOMEM;
}
/* 检查[addr, addr+len)的区间是否存在映射空间,假如存在重合的映射空间需要munmap */
while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
&rb_parent)) {
if (do_munmap(mm, addr, len))
return -ENOMEM;
}
/*
* Private writable mapping: check memory availability
*/
if (accountable_mapping(file, vm_flags)) {
charged = len >> PAGE_SHIFT;
if (security_vm_enough_memory_mm(mm, charged))
return -ENOMEM;
vm_flags |= VM_ACCOUNT;
}
//检查是否可以合并[addr, addr+len)区间内的虚拟地址空间vma
vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
if (vma) //假如合并成功,即使用合并后的vma, 并跳转至out
goto out;
//如果不能和已有的虚拟内存区域合并,通过Memory Descriptor来申请一个vma
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma) {
error = -ENOMEM;
goto unacct_error;
}
//初始化vma
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = vm_flags;
vma->vm_page_prot = vm_get_page_prot(vm_flags);
vma->vm_pgoff = pgoff;
INIT_LIST_HEAD(&vma->anon_vma_chain);
if (file) { //假如指定了文件映射
if (vm_flags & VM_DENYWRITE) { //映射的文件不允许写入,调用deny_write_accsess(file)排斥常规的文件操作
error = deny_write_access(file);
if (error)
goto free_vma;
}
if (vm_flags & VM_SHARED) { //映射的文件允许其他进程可见, 标记文件为可写
error = mapping_map_writable(file->f_mapping);
if (error)
goto allow_write_and_free_vma;
}
//递增File的引用次数,返回File赋给vma
vma->vm_file = get_file(file);
error = file->f_op->mmap(file, vma); //调用文件系统指定的mmap函数
if (error)
goto unmap_and_free_vma;
/* Can addr have changed??
*
* Answer: Yes, several device drivers can do it in their
* f_op->mmap method. -DaveM
* Bug: If addr is changed, prev, rb_link, rb_parent should
* be updated for vma_link()
*/
WARN_ON_ONCE(addr != vma->vm_start);
addr = vma->vm_start;
vm_flags = vma->vm_flags;
} else if (vm_flags & VM_SHARED) {
error = shmem_zero_setup(vma); //假如标志为VM_SHARED,但没有指定映射文件,需要调用shmem_zero_setup(),实际映射的文件是dev/zero
if (error)
goto free_vma;
}
//将申请的新vma加入mm中的vma链表
vma_link(mm, vma, prev, rb_link, rb_parent);
/* Once vma denies write, undo our temporary denial count */
if (file) {
if (vm_flags & VM_SHARED)
mapping_unmap_writable(file->f_mapping);
if (vm_flags & VM_DENYWRITE)
allow_write_access(file);
}
file = vma->vm_file;
out:
perf_event_mmap(vma);
//更新进程的虚拟地址空间mm
vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
if (vm_flags & VM_LOCKED) {
if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current->mm)))
mm->locked_vm += (len >> PAGE_SHIFT);
else
vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
}
if (file)
uprobe_mmap(vma);
/*
* New (or expanded) vma always get soft dirty status.
* Otherwise user-space soft-dirty page tracker won't
* be able to distinguish situation when vma area unmapped,
* then new mapped in-place (which must be aimed as
* a completely new data area).
*/
vma->vm_flags |= VM_SOFTDIRTY;
vma_set_page_prot(vma);
return addr;
unmap_and_free_vma:
vma->vm_file = NULL;
fput(file);
/* Undo any partial mapping done by a device driver. */
unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
charged = 0;
if (vm_flags & VM_SHARED)
mapping_unmap_writable(file->f_mapping);
allow_write_and_free_vma:
if (vm_flags & VM_DENYWRITE)
allow_write_access(file);
free_vma:
kmem_cache_free(vm_area_cachep, vma);
unacct_error:
if (charged)
vm_unacct_memory(charged);
return error;
}
五、
mmap_region() 调用了 call_mmap(file, vma),call_mmap 根据文件系统的类型选择适配的 mmap() 函数,我们选择目前常用的ext4,ext4_file_mmap() 是ext4对应的mmap, 功能非常简单,更新了file的修改时间(file_accessed(flie)),将对应的operation赋给 vma->vm_flags,后面的文件系统章节在学习这块。
通过分析mmap的源码我们发现在调用 mmap() 的时候仅仅申请一个 vm_area_struct 来建立文件与虚拟内存的映射,并没有建立虚拟内存与物理内存的映射。假如没有设置 MAP_POPULATE 标志位,Linux并不在调用 mmap() 时就为进程分配物理内存空间,直到下次真正访问地址空间时发现数据不存在于物理内存空间时,触发 Page Fault 即缺页中断,Linux才会将缺失的Page换入内存空间。其代码流程图如下所示