一、map数据结构

Golang的map使用哈希表作为底层实现,一个哈希表里可以有多个哈希表节点,也即bucket,而每个bucket就保存了map中的一个或一组键值对。

map数据结构由runtime/map.go:hmap定义:

type hmap struct {
    count     int // 当前保存的元素个数
    ...
    B         uint8
    ...
    buckets    unsafe.Pointer // bucket数组指针,数组的大小为2^B
    ...
}

二、bucket数据结构

bucket数据结构由runtime/map.go:bmap定义:

type bmap struct {
    tophash [8]uint8 //存储哈希值的高8位
    data    byte[1]  //key value数据:key/key/key/.../value/value/value...
    overflow *bmap   //溢出bucket的地址
}

每个bucket可以存储8个键值对。

  • tophash是个长度为8的数组,哈希值相同的键(准确的说是哈希值低位相同的键)存入当前bucket时会将哈希值的高位存储在该数组中,以便后续匹配。
  • data区存放的是key-value数据,存放的顺序是key/key/key/…value/value/value,如此存放是为了节省字节对齐带来的空间浪费。
  • overflow指针指向的是下一个bucket,据此将所有冲突的键连接起来。

注意:上述中data和overflow并不是在结构体中显示定义的,而是直接通过指针运算进行访问的。

三、哈希冲突

当有两个或以上数量的键被哈希到了同一个bucket时,我们称这些键发生了冲突。Go使用链地址法来解决键冲突。由于每个bucket可以存放8个键值对,所以同一个bucket存放超过8个键值对时就会再创建一个键值对,用类似链表的方式将bucket连接起来。

bucket数据结构指示下一个bucket的指针称为overflow bucket,意为当前bucket盛不下而溢出的部分。事实上哈希冲突并不是好事情,它降低了存取的效率,好的哈希算法可以保证哈希值的随机性,但冲突过多也是要控制的。

四、负载因子

负载因子用于衡量一个哈希表冲突情况,公式为:
负载因子=键数量/bucket数量

例如,对于一个bucket数量为4,包含4个键值对的哈希表来说,这个哈希表的负载因子为1。
哈希表需要将负载因子控制在合适的大小,超过其阀值需要进行rehash,也即键值对重新组织:

  • 哈希因子过小,说明空间利用率低
  • 哈希因子过大,说明冲突严重,存取效率低

每个哈希表的实现对负载因子容忍程度不同,比如Redis实现中负载因子大于1时就会触发rehash,而Go则在在负载因子达到6.5时才会触发rehash,因为Redis的每个bucket只能存1个键值对,而Go的bucket可能存8个键值对,所以Go可以容忍更高的负载因子。

五、渐进式扩容

1.扩容的前提条件

为了保证访问效率,当新元素将要添加进map时,都会检查是否需要扩容,扩容实际上是以空间换时间的手段。 触发扩容的条件有二个:

1.负载因子 > 6.5时,也即平均每个bucket存储的键值对达到6.5个。
2.overflow数量 > 2^15时,也即overflow数量超过32768时。

2.增量扩容

当负载因子过大时,就新建一个bucket,新的bucket长度是原来的2倍,然后旧bucket数据搬迁到新的bucket。 考虑到如果map存储了数以亿计的key-value,一次性搬迁将会造成比较大的延时,Go采用逐步搬迁策略,即每次访问map时都会触发一次搬迁,每次搬迁2个键值对。

当前map存储了7个键值对,只有1个bucket。此地负载因子为7。再次插入数据时将会触发扩容操作,扩容了之后再将新插入键写入新的bucket。

hmap数据结构中oldbuckets成员指身原bucket,而buckets指向了新申请的bucket。新的键值对被插入新的bucket中。 后续对map的访问操作会触发迁移,将oldbuckets中的键值对逐步的搬迁过来。当oldbuckets中的键值对全部搬迁完毕后,删除oldbuckets。

数据搬迁过程中原bucket中的键值对将存在于新bucket的前面,新插入的键值对将存在于新bucket的后面。

3.等量扩容

所谓等量扩容,实际上并不是扩大容量,buckets数量不变,重新做一遍类似增量扩容的搬迁动作,把松散的键值对重新排列一次,以使bucket的使用率更高,进而保证更快的存取。 在极端场景下,比如不断地增删,而键值对正好集中在一小部分的bucket,这样会造成overflow的bucket数量增多,但负载因子又不高,从而无法执行增量搬迁的情况,如下图所示:

上图可见,overflow的bucket中大部分是空的,访问效率会很差。此时进行一次等量扩容,即buckets数量不变,经过重新组织后overflow的bucket数量会减少,即节省了空间又会提高访问效率。

六、查找过程

查找过程如下:

1.根据key值算出哈希值
2.取哈希值低位与hmap.B取模确定bucket位置
3.取哈希值高位在tophash数组中查询
4.如果tophash[i]中存储值与哈希值相等,则去找到该bucket中的key值进行比较
5.当前bucket没有找到,则继续从下个overflow的bucket中查找。
6.如果当前处于搬迁过程,则优先从oldbuckets查找
注:如果查找不到,也不会返回空值,而是返回相应类型的0值。

七、插入过程

新元素插入过程如下:

1.根据key值算出哈希值
2.取哈希值低位与hmap.B取模确定bucket位置
3.查找该key是否已经存在,如果存在则直接更新值
4.如果没找到将key,将key插入

八、Map的value赋值
package main

import "fmt"

type Student struct {
	Name string
}

var list map[string]Student

func main() {

	list = make(map[string]Student)

	student := Student{"Aceld"}

	list["student"] = student
	list["student"].Name = "LDB"

	fmt.Println(list["student"])
}

结果:

编译失败,
./test7.go:18:23: cannot assign to struct field list["student"].Name in map

分析:
map[string]Student 的value是一个Student结构值,所以当list[“student”] = student,是一个值拷贝过程。而list[“student”]则是一个值引用。那么值引用的特点是只读。所以对list[“student”].Name = "LDB"的修改是不允许的。

方法一:

package main

import "fmt"

type Student struct {
	Name string
}

var list map[string]Student

func main() {

	list = make(map[string]Student)

	student := Student{"Aceld"}

	list["student"] = student
	//list["student"].Name = "LDB"

    /*
        方法1:
    */
    tmpStudent := list["student"]
    tmpStudent.Name = "LDB"
    list["student"] = tmpStudent

	fmt.Println(list["student"])
}

其中:

    /*
        方法1:
    */
    tmpStudent := list["student"]
    tmpStudent.Name = "LDB"
    list["student"] = tmpStudent

是先做一次值拷贝,做出一个tmpStudent副本,然后修改该副本,然后再次发生一次值拷贝复制回去,list[“student”] = tmpStudent,但是这种会在整体过程中发生2次结构体值拷贝,性能很差。

方法二:

package main

import "fmt"

type Student struct {
	Name string
}

var list map[string]*Student

func main() {

	list = make(map[string]*Student)

	student := Student{"Aceld"}

	list["student"] = &student
	list["student"].Name = "LDB"

	fmt.Println(list["student"])
}

我们将map的类型的value由Student值,改成Student指针。

var list map[string]*Student

这样,我们实际上每次修改的都是指针所指向的Student空间,指针本身是常指针,不能修改,只读属性,但是指向的Student是可以随便修改的,而且这里并不需要值拷贝。只是一个指针的赋值。

九、Map的遍历赋值
package main

import (
    "fmt"
)

type student struct {
    Name string
    Age  int
}

func main() {
    //定义map
    m := make(map[string]*student)

    //定义student数组
    stus := []student{
        {Name: "zhou", Age: 24},
        {Name: "li", Age: 23},
        {Name: "wang", Age: 22},
    }

    //将数组依次添加到map中
    for _, stu := range stus {
        m[stu.Name] = &stu
    }

    //打印map
    for k,v := range m {
        fmt.Println(k ,"=>", v.Name)
    }
}

结果如下:

zhou => wang
li => wang
wang => wang

分析:

foreach中,stu是结构体的一个拷贝副本,所以m[stu.Name]=&stu实际上一致指向同一个指针, 最终该指针的值为遍历的最后一个struct的值拷贝。

正确写法:

package main

import (
    "fmt"
)

type student struct {
    Name string
    Age  int
}

func main() {
    //定义map
    m := make(map[string]*student)

    //定义student数组
    stus := []student{
        {Name: "zhou", Age: 24},
        {Name: "li", Age: 23},
        {Name: "wang", Age: 22},
    }

    // 遍历结构体数组,依次赋值给map
    for i := 0; i < len(stus); i++  {
        m[stus[i].Name] = &stus[i]
    }

    //打印map
    for k,v := range m {
        fmt.Println(k ,"=>", v.Name)
    }
}
golang学习面试网站

网站邀请码:Gopher-12625-9007