1、免费学习资料,请关注学习资料,请关注淘宝:学神资料站:学神资料站/ ! LINDO #$LINDO Lineareractive Discrete Optimizer!#$ %&()*+,-! 0123456!LINDO/386 5.378$9:,;!;0+?AB 1,000,000&$9:CD&+?AB100,000&$9:EFG+)HIJ/&+? AB32000&$9:*+CD&+?AB100,000&2K!LM NOPQRSTU$VWXYZ$_ab2Ocdefgh!+i;j$?%kl m$%knopq$rstuvw!xy2LINDOz %&O!|:,;()*+,-01$O !E!$O#$
2、%i&()*+!,-.$/0(1*+,-;1|32-.!3425 8!8_$89:;5688_$?=AB,-CD+,-1=(,-EF!G)HI!8_2 1.1 LINDO !#$%LINDO XYL%M$N%M!OP1QRXYSTU1CVWM(Information)HELPCOM ( LOCAL|X XYYZ78 XY_Mabcaded )CAT ( Categories ) TIMEDATE2Cf/efMMAX( Input )ghefi:j;1MINRETR ( Retrieve ) RMPS ( Read MPS ) TAKELEAV ( LEAVE ) RDBC*FBR * FINS
3、*3CaM(Display) PIC ( Picture ) TABL ( Tableau )LOOKghefilj; mnhof;f/ mnhofMPSf/mnhof;YUvgw OFBSXYtu! OMPSxStu!ayz=|!_1+Da !Za;CDa;(yzaQ)*Y!=aQ)*m!|9./(Z (zeros )SHOC ( Show Column ) SOLU ( Solution ) RANGEBPIC* CPRI* RPRI* DMPS*PPIC*4Cf/e0MSAVE( File Output );uh123e045nhf/+,6B23e078;!Y5Df/!StuDIVE (
4、 Divert ) RVRT ( Revert ) SMPS ( Save MPS ) SDBC*FBS* FPUN* SMPN*5C|M(Solution)11f/!StuMPS!Stu1;O=F9!MPSxStu2GOPIV(Pivot) GLEX*6C-.ABMALT(Alter) EXT(Exten DEL(Delete)|%&;:m%B !;?RFj( Problem Editing )no;!0+ CD%&HI EF%&HI G0%&CD!HI CD%Y G0%&CD!TI sJ%&CD!HTIOK23ABLMpno;!(yz$no;pq 1r;yz!0+ Sst01uv$kl=
5、ZLINDO!D+G0;!F.S BUGSETXSISTICSYTITL XTITLEY 1.2LINDO &()TXY$?xK;ef$;a$;lm$N0LINDOyTU$32XY :MAX MIN TITL EDIT LOOK GOQUITzwef%&i:j; zwef%&ilj; ef;F. K23efpK23AB%&;d23Haef!;Za01ka/Y0tj$0?12LINDO$3CLINDOjm4XYj$23H0t:2: LINDO 56XY!78$d:j$?gf789F!LINDOY2Njm%&XY( FQUIT : )$ LINDO ;|63%XY78$yT%&XY$Sy QUIT
6、XY$=|6TU0122Cef;XYMAX / MIN4OMAX / MINXY?r5mghHef%&;?2Z*ef!;!+i!Sv:MAX 5.24X1 +7.3X2 +8.34X3 +4.18X4 SUBJECT TO1.5X1 +X2 +2.4X3 +X4 2000 X1 +5X2 +X3 +3.5X4 8000 1.5X1 +3X2 +3.5X3 +X4 5000X1 $X2 $X3 $X4 0ef;!TUUST:MAX/MINXY(;!efxS%25J$325J :(1);0t!;3 MAX (p MIN )$ ST (p SUBJECTTO )TO )!LEND2E3IDx2MAX
7、 ( p MIN )$ ST (p SUBJECTso*%&Dx$=/:#)l#M9F!2(2)CDOENO8&=/$#P%&=/BCO=Q$#R!? =Qp+=23(0?SXCDZaCD!,IP2TFUEL01$Y$FUEL10y2108$?_WXv(3)EyZOZa$OZa2*_w! ;(O LOOK XY)e0(B23p)b$EyZ_W#K)2(4)EFG+E30ta+m$E30tyS$TS:MAX2X1b3X2b5)MAXZ=2X1b3X2M !2(5)cdTEFG+(P%m)pHIJ/$ME30teZCfZ2TS:MAX2(X1+X2)MIN2*X1+3*X2M !25: MAX 5
8、.24X1+7.3X2+8.34X3+4.18X4 ! MAXjBCD%x?ST!ST?#SUBJECT TO?1.5X1+1.0X2+2.4X3+1.0X42000 !OVE3O=?1.0X1+5.0X2+1.0X3+3.5X48000 !?ZaF MAXXY78?1.5X1+3.0X2+3.5X3+1.0X4=0 HI!$EBE3ef(6)dHIJ/$CDBCd=0/g$a+BCd=0/Lk$TS:3X1b4X2h30)3X13h4X2 M !2(7);0+BC#K*+pl+!SVE3#Ki+!S$TSUTY0+!XF !U .258E+52S0+ l+!S$ef!j+5JO*+9:6j$
9、l+9:5j2(8)F=g=c$0+c$CDOcE3kfDx:$;!#$lRM mn0tDx)6o2d;efb$Dx)6o yp!2TS$T!;efxS p!:maxs.t.z=3x1 x1 3x1x1+4x2+2x2+x2 x2+6x3-x3-3x3x3-5x4+2x4+6x4x410250dOMAX/MINXYef;b$Sy;!%mNO23$;*6o0?dT%mqUef2(9)CD!=GHI HI!$Er*d;DwP23Cef;F.XYTITLvsW;t$LINDOZTITLXY$?(;UZ*!$TITLud;!P%m$8_udv&-Z)c2wb$vHI!(x$?dN&HI!DHENO8&
10、=/!2TS6UTITLE This is aum profit problemUMAX4 X1 + X2 - X3 + 2 X4ySTyRESOURCE) X1 - X2 + X3 - X4 30 ySALE) 3 X1 + X2 - X3 + 2 X4 36 ySTORAGE) X1 + 2 X2 + X3 - 2 X4 20:MAX 3X1 + 4 X2+6x3-5x4?ST X1+2x2-x3? +2 X4 10 3x1+x2-3x3+6x425END:OMAX/MINXYef%&;j$z;uud8u$?(z;D# Y28u;3uu%&;2Sy|BMAX/MINXYef%&;28u!P
11、%&;1PA;2SyN0LINDO$ 8u; F2!4$*tu%&ef!;$BC1KuuBnh$Uvnhf/tu$;uhY1dSAVE$SMPS)DIVEXY#23.K23ABXYEDITEDITXY?O#ef%&,;2TSUEDIT0tTAB$%$?d$%efCAB%&;2efCABx&j$ESCxIAB$9j%Bnop(ALT+ESCu)no$xIAB2TSOEDITefT;UOESCN0AB*+,no2EDIT?AB%&-ef!;2TS$Sy./H%&-ef!;DHF.$HIDH$?OEDIT:fAB$%$1;ABnoKU7LINDO/PC 5.3(C) 1995 LINDO SYSTE
12、MS INC.12345TITL This is aum profit problem MAX4 X1 + X2 - X3 + 2 X4STRESOURCE) X1 - X2 + X3 - X4 30 SALES) 3 X1 + X2 - X3 + 2 X4 36LINDO/PC 5.3 1995 LINDO SYSTEMS INC. 123456. 23 - Exit with compile - Exit withoompileMAX 4 X1 + X2 - X3 + 2 X4 STX1 X2 + X3 - X4 = 303 X1 + X2 - X3 + 2 X4 = 36 X1 + 2
13、X2 + X3 2 X4 = 20 ENDyEND67. 23STORAGE)ENDX1 + 2 X2 + X3 - 2 X4 20 - Exit with compile - Exit withoompileOEDITXYAB!;,;0%O5J$91;3AB2I65998&=/!;2,;3:!;3OT56!#Y#AB$SALTCEXTCAPPCy24.;23aLOOKLOOKXY 18u!;!%w_pKwd23Ha2zXY!xS : LOOKmFs#mFs? 4%LO!mZ$ %&R*+21ZaP1m3EFG+$2 ZaP%HIyy$mFs? Q*a!/!56$S2-5ZaamPAm BP7
14、mr!;$mFs? ALL$3a*&;$SymZn?$=HIP%m$3LOOK)LOOK 1yp2TS$(Hef!;$TM 9F!LOOKXY: LOOK 13b$23av:S LOOK XYv: LOOK 1-3=23av:S LOOK XYv: LOOK ALL8MAX 5.24 X1 + 7.3 X2 + 8.34 X3 + 4.18X4 SUBJECT TO2) 1.5X1+ X2+2.4X3+ X4=20003)X1+5X2+ X3+3.5X4=8000 ENDMAX 5.24 X1 + 7.3 X2 + 8.34 X3 + 4.18 X4=23av:5.lm;XYGOGOXY!xS
15、v: GO n#nvOciO!9:;B+$Syn?$=HI:vLINDOiO!9:;B+2H?;vT$lmTU1uB!23aST:Sy6;Y$=G0EFG+0+)Lka+!#$_%xy$*|6LINDOXY7829RANGES IN WHICH THE BASIS IS UNCHANGED: GOLP OPTIMUM FOUND AT STEP4 OBJECTIVE FUNCTION VALUE1)12737.0600VARIABLEVALUEREDUCED COSTX1294.117600.000000X21500.000000.000000X30.0000001.414647X458.82
16、3530.000000ROWSLACKDUAL PRI2).0000001.9535293).000000.2423534).0000001.378236DO SENSITIVEYSIS? ( Y/N ) !Sy6;N$=0tT NO. ITERATIONS = 4!qrlE$*G0;B+ LP OPTIMUM FOUND AT STEP 4:!|6LINDOXY78MAX 5.24X1 +7.3X2 + 8.34X3 + 4.18X4 SUBJECT TO2)1.5X1+ X2 +2.4X3 + X4 =2000!EyZ!a8ef!SEw3)X1+5X2 + X3 +3.5X4 =8000!
17、23e0HI9mZ4)1.5X1+3X2 +3.5X3 +X4 =5000 ENDU5.N0LINDOXY QUIT$zXY!3 N0LINDO$|6TU012jmQUITXYj$=uh!;1m8u F2OF:QUIT CT %ef)e0$2eH?&XY1t!23e02!L! 89:!_$#$ LINDO!23e0210: MAX 3X1+2X2-X3 ySUBJECT TO yX1+X2+X312 y2X1+4X2-X315 y3X1-X2+4X318 yEND: LOOK ALLMAX 3 X1 + 2 X2 - X3 SUBJECT TO2) X1 + X2 + X3 = 123) 2X
18、1 + 4X2 - X3 = 154) 3X1 - X2 + 4X3 DO SENSITIVEYSIS?(Y/N) YRANGES IN WHICH THE BASIS IS UNCHANGED COST COEFFICIENT RANGESVARIABLECURRENTALLOWABLEALLOWABLE COEFINCREASEDECREASEX13.000000INFINITY2.000000X22.0000003.3636363.000000X3-1.0000002.642857INFINITY RIGHND SIDE RANGESROWCURRENTALLOWABLEALLOWABL
19、E RHSINCREASEDECREASE212.000000INFINITY5.142857315.00000018.0000003.000000418.0000004.50000021.750000 % &()*+,H56!?&XYAMAX/MIN$LOOK$GO$QUIT-?t|%&;8!TU$B_st$HTUCDLM;*|u;!$B;)ME&Knhf/$!VMcFtu28F!E! 8LINDO;1|xyuh1=Y$32XY ;f/uhXYSAVE;f/XYRETRCTAKEe045XYDIVEG*23aXYRVRT 2.1 *+,-! SAVE1.XY3U/ef8u!;nhf/!Suh
20、2.XYxSUUSAVE f/O.HIO#f/O0s1J&=/KK$P%&BC =Q2HIO0s1&/KK2D$SAVEXY;8uef%&;bLp$*WjmSAVEXYj$(8u!;E%&MN23.XYkOUZ8uef%&;$SgfTXYUUSAVEM.LIN=z;1M.LINvO!f/udnh2SyOcgf!f/OvM$=&K!nhf/OvM$HIOu?23b;lm!xyO PPd23HaVE&K!nhf/2= S&/lmxy&Knhf/$1dXYDIVE#2s ;nhf/ Q+-&K$?OTU01f/E,YZXYDIR #+,2BSyqROTU01f/aXYTYPE#azf/!8_$23H
21、112a%2cFo,!S$3 !vSAVEXY&K!f/ A:JS!f/$!VcFao,$3cF(K:mAB2 2.2 *+./! RETR (RETRIEVE)1.XY3Umnh%&OSAVEXYuh!;f/B8u2.XYxSUURETRf/OTHIO#f/O(HIO)BC OSAVEXY&K!nhf/O(HIO)23.XYkOUUOnh&K%&OvMTTUU.LIN!f/$=?:mURETR M.LINzXYjmj$t!;1oB8u$Syd4)8u%&;!$8uV!;1 F2(,!;?jma$lmyTU2HkB!SAVEXY;31;f/uh$VE31lmj!xyuh2Sy*/lmXYGOj
22、mj$ad23H!lmxy&Knhf/$0BC45XYDIVE2 2.32345!DIVE(DIVERT)1.XY3U123e0!4BiO!nhf/22.XYxSUUDIVEf/O.HIO#f/O(HIO) OcGO!O#uu23e0!nhf/O23.XYkOUDIVEXYjmj$%W23e0M14BiO!nhf/$:1+ e0M1E|d23Ha$B%2+*!Xa;1d23Ha$YZT!TUU13SyqUTU$0 32TUdDIVEXYjm)j$V#zd23Ha!M14Bnhf/SOLU.DAT2td$SydTU01TOTU01f/aXYTYPE#anhf/SOLU.DAT!8_$1ZBU14
23、CTYPE SOLU.DATMAX 2 X1 + 3 X2 SUBJECT TO2)X1 + 2 X2 = 123) 2 X1 + 4 X2 ST MAXX1+2X22X1+4X2NUQUITC0 XYDIVE&K!nhf/ ASCSuu!$!4Q&K!f/ ?a!$?O78f8ABi?(SDOSABXYEDIT$Windows!Notepaty)ABno23($-?(%&;:mef(2eghef)nhf/)CaClmC;8TU2 2.46789:;!RVRT(Revert)1.XY3U Fe045XYDIVE$G*23e022.XYxSUURVRT3.XYkOUmH%F?$XYDIVEjmj
24、$_j!78XY$SGO$ LOOKy&!23e0M1E|d23HaV 4BOciO!nhf/2Syjm%&RVRT$0?qrDIVEXY!453$G*!23e02!RVRTXY!33?$RVRTXY%O*8DIVEa9kO$VWRVRTXY%O*dDIVEjjm2blkODIVE)RVRTXY$0?cdOc!*|$/Qr*!e0 xyuuBnhf/2 2.5!./! TAKE1.XY3UmnhXY2%&0LINDOXYKK!f/B8u*eJjm322.XYxSUUTAKEf/O.HIO#f/O)HIOM0OcOP215ROWSLACKDUALPRI2)3.000000.0000003).00
25、00001.000000NO.ITERATIONS= 2U3.XYkOU89:Q#!QXY$M 0Ocmghef!$TAKEXY,H /%&XYf/OPvfgqh(gh)$LINDOmzf/$TAKEXYkLINDOXYKdjm2*jmXY204?QiXYf/ %&0jkJ9F!LINDOXYKK!f/$KOAB i?XSDOS!EDIT$WINDOWS!NOTEPADyYlABm*uudnh2XYf/!9j%&XYBC LEAVE2TS$LMST%&f/OvSTREAM.BATYf/U:fLINDO$DjjmHdXYSTREAM .BAT$=LINDO1nBjm#!N%JXY$jmBfgXY
26、PAUS$=fgjm2gf6o$qUjm2rsoBdXYqrXYLEAVE$N0dXY$|6LINDOXY782TAKEXYF?tXY!dFp:$O?O#/%&0ASCS#K!;f/efLINDO 2TS$OABi?#K Tnhf/$f/Ov M.DATU:fLINDO$DjOTAKEXY3&f/$0?13&;qf8u2OTAKEXY;f/!RF(:,;LWO2:,;!;f/?O#$AB01XSDOS!EDIT$Windows!NotepadyY&K$-OAB$r16UTAKE M.DAT!1f/!;of8uMAX 3X1+4X2+X3-X4ST X1-2X2+X3+3X48!_w$XYf/;
27、xSBC2X1+X2-2X3-2X413!8ghefbxK%($3E9X1+3X3+X421!mZ$EyZv2 ENDLEAVE!9j%&XYBC LEAVERETR M.LIN DIVE SOLU.DAT LOOK ALLPAUS GON LEAVER$?nosp$ttefR+22:!;$?OOcAJ!i?& K/9LINDO;xS!;f/$Dj0TAKEXYof$OLINDO|2!4$TAKEXY?UvLINDO)#$Oi?)c!5%2D$?/;19u(z;!LINDOXYKK%&XYf/23(TAKEXY3%XYf/j$EP1;of8u$VW1ejmf/Y$t;ef$jmdXY%BxK2
28、TS$XYf/UOTAKEXYofj$v1;qf8u(MAXXY)$Djd23Ha3&;(LOOK ALLXY)$lm3&;(GOXY$djm(23ka!6; N)$ 9jN0XYf/(LEAVEXY)$|6LINDOXY782 2.63!./!LEAVE3&XY!31xSdTAKE#217MAX 3X1+4X2+X3-X4 ST X1-2X2+X3+3X48 2X1+X2-2X3-2X413 X1+3X3+X421ENDLOOK ALL GON LEAVE - ./01&*23iwP%!8_)j$-3xghyOLINDO#|%&(,-;$uB;!9$z3dR+ef;H$OGOXYlm;8!T
29、U|O181(!,r*2Tbr*:m%BCj !$bEB*|u9$VWO*:m#$_%yy2S4M(,-;#?GOXYFP%56!|;!9a3):$OST8!S!O(U(1).(8u!;:m52dOGOXY|;b$Sy?B+n$%) !TrE;a09j%Blm!xy$30 P% kBO! !2Sy*8u;:miOB+b!cxy$? kOXYD+n#AB2TS( T?-.Umaxst.2x1 +8x2 +6x38x1 +3x2 +2x3 2502x1 + x2 4x150+3x3 150 x1 $x2 $x3 0sGOXY!nv*+2b$rEa!8_vU4b+=|u9$S*8u;PAB!=+d$
30、?OTABLyaXY#t(P7!56)218UMAX 2x1+8x2+6x3? ST? 8x1+3x2+2x3250? 2x1+x250? 4x1+3x3150? ENDUGO 2!lm$9:;!;B+2BNO$mn|;1oBy2.,DB+2( %2,;):!;(2e42-.Dc/E:$Bbc)c!;)$dkOu?n!GOXYj$LINDO?d-OjkB+!)j$fb0$G0M1H%F!ka$TS(4%;ST|OiU 3.2ABCD!PIV (Pivot)1.XY:m%B24lE.2.XYxSUUPIV CDOpCD?Z19UMAX 2x1+8x2+6x3? st? 8x1+3x2+2x325
31、0? 2x1+x250? 4x1+3x3150? ENDUGO 2!lm$9:;3!4b+=|09$1,D!NU3.XYkOUPIVXYjmj$iO!CD0pf(3Kv:CD)$3CD !E=+O2SCDOu?$=:,=nB)*:CD2TS( H%F!;$#TUxy$U0 56CD LINDO728D!$ECDO$TSdH%F!;$=r*O3&CD!?Z$3P4&CD:U20MAX2 X1 + 8 X2 + 6 X3 SUBJECT TOUPIV X1X1 ENTERS AT VALUE 25.000 IN ROW 3 OBJ. VALUE = 150.00UUPIVX2 ENTERS AT
32、VALUE 50.000 IN ROW 3 OBJ. VALUE = 400.00UPIVX3 ENTERS AT VALUE 50.000 IN ROW 4 OBJ. VALUE = 700.00UPIVLP OPTIMUM FOUND AT STEP 2OBJECTIVE FUNCTION VALUE 1)700.000000VARIABLEVALUEREDUCED COST X1.00000022.000000X250.000000.000000X350.000000.000000ROWSLACKDUAL PRI2).000000.0000003).0000008.0000004).00
33、00002.000000NO.ITERATIONS =2DO RANGE(SENSITIVITY)YSIS ? PIVUkOPIVXY?tSTE!U(1).%hhlxK !EF!rE2Sy1PIVXY8TABLXYPkO$0?9:B !Z!CjOi2(2).k4%iOCD:233d;-.!1+9b=a2U:%h!?$%)P)v#$_%2(,-!#$_% dLM+i;)|u9)j$A(+d=VC jVU0!2LINDOkl3R!32WZTYTUOiU21ULOOK ALL MAX 2X+3Y SURJECT TO (2)4X+3Y=10(3)3X+5Y=12 ENDUGOLP OPTIMUM F
34、OUND AT STEP 2 OBJECTIVE FUNCTION VALUE1) 7.45454500VARIABLEVALUEREDUCED COST X1.272727.000000Y1.636364.000000ROWSLACKDUAL PRI2).000000.0909092) 8 X1 + 3 X2 + 2 X3 = 2503) 2 X1 + X2 = 504) 4 X1 + 3 X3 Y! RANGES IN WHICH THE BASIS IS UNCHANGED COST COEFFICIENT RANGESVARIABLECURRENTALLOWABLEALLOWABLEC
35、OEFINCREASEDECREASEX2.0000002.000000.200000Y3.000000.3333331.500000RIGHND SIDE RANGESROWCURRENTALLOWABLEALLOWABLE RHSINCREASEDECREASE210.0000006.0000002.800000312.0000004.6666674.500000U &56OMAX/MINXYef;b$LINDOEBCK23AB3$*(ef!;:mno$0BCkOHIY#t28568;AB=!7&XY$KA UD+noXYALT(Alter)CmCDXYEXT (Extend)CmEFXY
36、DEL (Delete)CCDH5OPXYSUB(Sipmle Upper Bound)CYCDXYAPPC (Apppend Column)CCDT5OPXYSLB(Simple Lower Bound)$sJCDHT5XYFREE);ABXYEDITXdP%56Y2 4.1JKLM!ALT (Alter)1.XY3Uno8u;!D+22.XYxSUUALTn #ALT ALTER!#$nZ*no!RimZ23.XYkOUdALTXYT$23H0tTYkaU4bSy9F!CDOUv;$23H1qU0t,!ka234!a+3v(CD!,0+2WZTY,TUOi1xy223ULOOK ALLMA
37、X 2X1+3X2!_wUEFG+X2!0+v3 SUBJECT TO2) X1+2X2=123) 2X1+4X2a+VARU ALTCDO4除了上述基本用法之外,ALT语句还有以下功能:(1).修改约束方程右边常。在LINDO提示输入要修改的变量名时,如果键入三个字母RHS及,意即要改变约束方程右边常数。(2).改变约束方程式的关系符。在LINDO要求输入欲要修改的变量名时,如果键入三个字母DIR及,接着在屏幕提示下输入新的关系符或=,即可实现相应目的。(3).修改极大极小类型。如果用ALT语句修改的是第一行,键入DIR及后,即可在提示下输入MAX或MIN来改变原来的目标函数极大极小类型。(
38、4).增添新的变量。如果要在某一约束方程中增添一个新的变量,亦可仿照上述基本操作进行。因为是新出现的变量,屏幕上会出现有关确认与否的提示信息。以上四点内容综合举例如下:修改右边常数的例子如下:24:LOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=12!原来右边常数是123) 2X1+4X2RHS!修改右边常数NEW COEFFICIENT:!请输入新的系数ALT15!新的系数是15:ALT 1!修改第一行(目标函数行)VAR:!哪个变量ALTX2!X2NEW COEFFICIENT:!新的系数:ALT5!新的系数为5:LOOK ALLMAX 2X1+5X2!目
39、标函数中X2的系数已改为5 SUBJECT TO2) X1+2X2=123) 2X1+4X2=18 END:noHIEyZ!R5UnoEFG+jR5U25ULOOK ALLMAX 2X1+3X2!_wUV#!jR5 i:j SUBJECT TO2) X1+2X2=123) 2X1+4X2MIN!iljULOOK ALLMIN 2X1+3X2!td!jR5 ilj SUBJECT TOULOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=12!_wU3&HI!EyZR5 LM 3) 2X1+4X2 !,!R5 LMULOOK ALL MAX 2X1+3X2 SUBJ
40、ECT TO2) X1+2X2 = 123) 2X1+4X2 = 18 ENDUULOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=15!,!Lka+ 153) 2X1+4X2=18 ENDUCD%&,!CD1t!0+UkOALTXYbC_wT?v&-.U(1).E?/%mQ$Q=;x/1OP(0tHIm)2Sy*.EF%m$kODELXY(8P&F)2(2).jmALTXYj|BHcd,D+no !:m!$VE mQzwrE2!4$d|:,;OALTXY?)RluB18RS!92b$ 4.2NOP! EXT (Exten)1.XY3Ud;CDjkHI(m)22
41、6ULOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=123) 2X1+4X2X3!CDvX3VARIABLE NOT USEDHIS PROBLEM BEFORE. WANT IT INCLUDED? ALTY!=NOB3&CD$ Q1#-fyX YNEW COEFFICIENTU !,!0+ ALT4!0+v4 ULOOK ALLMAX 2X1+3X2+4X3 SUBJECT TO2) X1+2X2=123) 2X1+4X2=18 ENDU2) X1+2X2=123) 2X1+4X2=18 ENDU2.命令格式:3.命令使用:在EXT命令下对当前模型增加有约
42、束是追加在原有约束的最后一个之后的,其键盘操作方法类同于MAX/MIN命令下的要求。请看下例:使用行增加命令时须注意,结束该命令状态应使用END命令。4.3行删除命令 DEL (Delete)1.命令功能:从当前模型中峒除一个约束(行)。2.命令格式:DEL n其中n表示要删除的约束的行号。3.命令使用:请看下列:27:LOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=123) 2X1+4X2=18 END:EXT!增加行BEGIN EXTEND WITH ROW 4!从第四行开始增加?3X1+5X215?END:LOOK ALL MAX 2X1+3X2 SUB
43、JECT TO2) X1+2X2=123) 2X1+4X2=184) 3X1+5X2=15 END:EXT?END= DELXY!kOST&MU(1).P%m!EFG+E3ODELXYEF2Sy0tEFP%mH0tka$SUY$23(2).Syef!mZNO!;$U$23H0tka2TS( 8F!28ULOOK ALL MAX 2X1+3X2ULOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=123) 3X1+5X2=154) 2X1+4X2=18 ENDUDEL 1!EFP%mCANNOT DELETE ROW 1 .REENTER ROW NUMBER RO
44、WU!E3EFP%m$+,efmZ UULOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=123) 3X1+5X2=154) 2X1+4X2=18 ENDUDEL 2!EFPAm ULOOK ALLMAX 2X1+3X2 SUBJECT TO2) 3X1+5X2=153) 2X1+4X2=18 ENDUDEL 2!EFPAm2_w$3b!PAmULOOK ALL! V#-.!P&m MAX 2X1+3X2SUBJECT TO2) 2X1+4X2=18 ENDU(3).将原模型中的某一行删除后,LINDO会重新按自然数顺序排列剩下的约束,如果忽略了这一点,则有可能
45、删去本应保留的约束。4.4变量上限定义命令 SUB (Simple Upper Bound)1.命令功能:给当前模型中的变量设置上限。2.命令格式:SUB 变量名 常数其中的常数为给相应变量设置的上限数值。3.命令使用:给下述模型中变量X1设置上限5(即x15)的操作如下:29:LOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=123) 3X1+5X2=154) 2X1+4X2=18 END:SUB X1 5!为X1设定上限5:LOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=123) 3X1+5X2=154) 2X1+4X2=1
46、8 ENDSUB X1 5.00!X1的上限为5: LOOK ALLMAX2 X1 + 3 X2 SUBJECT TOSUBJECT TO2) X1+2X2=123) 3X1+5X2=154) 2X1+4X2=18 END:DEL 5!删除第5行INVALID ROW NUMBER.REENTER VALID ROWS ARE FROM 1 TO 4ROW:!无效的行号,重新输入有效的14行行号:虽然给一个变量增加上限与增加一个相应的约束作用是一样的,但增加变量上限的计算效率要高得多,因此凡是遇到有上限变量得情况,都应该用SUB命令而避免增加约束。4.5列增加命令 APPC(Append Co
47、lumn)1.命令功能:在当前模型中增加一个变量并增加相应的列。2.命令格式:APPC 变量名其中的变量名是要在模型中新增加的变量。3.命令使用:在APPC命令状态下,屏幕上会出现一系列提示信息,只要按照提示要求依次输入行号和对应的新变量系数即可。请看下例:30:LOOK ALL MAX 2X1+3X2SUBJECT TO2) X1+2X2=123) 3X1+5X2=154) 2X1+4X21 7!X3在第一行中的系数是7APPC2 8!X3在第二行中的系数是8APPC3 9!X3在第三行中的系数是9APPC0!退出APPC命令:LOOK ALLMAX 2X1+3X2+7X3 SUBJECT
48、TO2) X1+2X2+8X3=123) 3X1+5X2+9X3=154) 2X1+4X2=182) X1 + 2 X2 = 123) 3 X1 + 5 X2 = 154) 2 X1 + 4 X2 = 18ENDSUBX15.00000:= APPCXY!kO$TY&C_wU(1).SydAPPCXYxSu?CDO$=23H0t=*|efCDO!ka23b|ef,CDO2(2).Syefsp!mZ$23H0t_2TS( 8F!T$9:mZvsplefmZ4b$0aST8_U 4.6STZVWX! SLB (Simple Lower Bound)1.XY3UG;!CDZT522.XYxSUUSL
49、B CDO a+#!a+vGtCDZ!T5+:23.XYkOUGT?;CDX1ZT51.5X3x11.5Y!TUSTU31ULOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=123) 3X1+5X2=15ULOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=123) 3X1+5X2=154) 2X1+4X21 7APPC2 8APPC3 9APPC5 10INVALID ROW DISREGARDED APPCUENDU请注意,变量下限可以是正数,也可以是负数,当然也可以是零。因为 LINDO默认变量是非负的,即所有变量的下限都是
50、0,因此没有必要把变量的下限再设为 0。4.7取消变量上下限命令 FREE1.命令功能:取消当前模型中的变量的上限和下限。2.命令格式:FREE 变量名3.命令使用:取消上一节模型中变量X1的上下限:32:LOOK ALLMAX2 X1 + 3 X2 SUBJECT TO2) X1 + 2 X2 = 123) 3 X1 + 5 X2 = 154) 2 X1 + 4 X2 = 18ENDSUBX15.00000!X1 的上限为 5(隐含的下限为 0): FREE X1!取消X1 的上下限: LOOK ALLMAX2 X1 + 3 X2 SUBJECT TO2) X1 + 2 X2 = 123)
51、3 X1 + 5 X2 = 154) 2 X1 + 4 X2 = 18ENDFREEX1!变量 X1 的下限为-,上限为4) 2X1+4X2=18 END:SLB X1 1.5!为X1设定下限1.5:LOOK ALL MAX 2X1+3X2 SUBJECT TO2) X1+2X2=123) 3X1+5X2=154) 2X1+4X2=18 ENDSLB X1 1.5000!X1的下限为1.5:请注意,如果只要取消变量的上限而保留下限 0,则需要再加上下限 0:4.8模型全屏幕编辑命令 EDIT这个命令已经在第一章中讲过了。33: SLB X1 0!X1 的下限设为 0: LOOK ALLMAX2
52、 X1 + 3 X2 SUBJECT TO2) X1 + 2 X2 = 123) 3 X1 + 5 X2 = 154) 2 X1 + 4 X2 = 18END!所有变量下限为 0,上限为!即恢复原来的设置:: 7 89:;*=P%56OS&OLOOKXY#:Z8u!;8!aMXY2B PPab3%XYOccEdr*$S ! ZCj !$VWrExyy !$0*OB#K%2aXY281*56!J8aMXY !ZaXYTABL (Tableau)2yz=|aXYPIC (Picture)2YaXYSHOC(Show Column)2aXYSOLU(Solution) 2 =aXYZ(RANGE2z
53、eros)#$_% xyaXY 5.1_a%:;! TABL (Table)1.XY3Ua !Z22.XYxSUUTABL3.XYkOU(,-;!Oi$SykOTABLXY$=23Ha0!Cj !O2T1P%OGOXY|0 xy!;OPIVXY)TABLXY+,KTSTU34ULOOK ALLMAX 2X1+3X2 SUBJECT TO2) X1+2X2=123) 2X1+4X2NUTABLTHE TABLEAUROW (BASIS)X1X21ART.000 1.000.000 1.000 18.0002SLACK.000.000 1.000 -.500 3.0003X11.000 2.000
54、.000.500 9.000 5.2bcdefg:;! PIC (Picture)1.XY0+yz22.XYxSUUPIC3.XYkOUr*_w! $PICXYTa0!=0+yz$( vjH!+d OLO!ef=QZa!2YZTTU#AZ4.2$BZ12C24)14$CZ1302TZY0=Qc!%(=0236Z .000000B .000001Y .000001B .000009X .000010B .000099W .000100B .000999V .001000B .009999U .010000B .099999T .100000B .999999A 1.000001B 10.0000
55、00ULOOK ALLMAX 5X1+12X2+130X3 SUBJECT TO2) 0.1X1+4.2X2+24X3=15003) 0.05X1+0.3X2+14X3=2400 ENDUPIC1231U5BCMAX2UUABD3UUTBDU 5.3Y:;! SHOC (Show Column)1.XY0+Yyz22.XYxSUUSHOCCDO3.XYkOUYZT!ThU 5.4:;! SOLU (Solution)1.XY3Ua|xy237ULOOK ALLMAX 5X1+12X2+130X3 SUBJECT TO2) 0.1X1+4.2X2+24X3=15003) 0.05X1+0.3X2
56、+14X310000002.XYxSUUSOLU3.XYkOUOSOLUXYa|xy$?F?;|Blm!bc$k-._%3DR%2WZTTU38ULOOK ALLMAX 2X1+8X2+6X3 SUBJECT TO2) 8X1+3X2+2X3=2503) 2X1+X2=504) 4X1+3X3NUSOLUOBJECTIVE FUNCTION VALUE 1)700.000000VARIABLEVALUEREDUCED COST X1.00000022.000000X250.000000.000000X350.000000.000000ROWSLACKDUAL PRI2).000000.0000
57、00 5.5Z (-zero)dej:;!1.XY3Ua;22.XYxSUZ3.XYkOU3%XY( CD1W1SOLUXY|0iv$=ZXY8SOLUXY!3tw2 5.6EFGHIkl:;! RANGE1.XY3Ua;!#$_%xy22.XYxSUURANGE39UZOBJECTIVE FUNCTION VALUE1)700.000000VARIABLEVALUEREDUCED COST X250.000000.000000X350.000000.000000ROWSLACKDUAL PRI3).0000008.0000004).0000002.000000NO.ITERATIONS=2U
58、3).0000008.0000004).0000002.000000NO. ITERATIONS = 2U3.XYkOU( P&P&F|u#$_%xy!Th$kORANGEXYj?aST8_Uw#KaMXY%($RANGEXYE:mrE$;O a2!43%XY;3OdGOXY!#$_%)j2SyE(; ?801*+,- +i,-pd!+*8_)%2LINDOf0-1*+,-)*+,-v8;|!32LINDO?1;!%w_CDOPv0-1CDC%w_CDOPv*+CDC#RCD;tYvTUCD2!4$LINDOf|0-1C*+g9,-!32dkOLINDO|*+,-!3b$F0-1CDC*+CD
59、!OPXY):$#$TUS|C;ABy8Q56O!8_:htw2!4$8/OP0-1CD)OP*+CD62YCGINUvi*8_#5 6.1 WX 0-1 ST!1.XY3UOP;!0-1*+CD22.XYxSUCDO#!CDOZa1*OPv0-1CD!CD23.XYkOUef%&0-1*+,-;!RF$ ?!(,-;!efRF:mTU$jjOXY#OP0-1CD2XY%)d(!(,-;efx&jM3:m2TYZ&0-1CD!*+,-;!HTUTU42MAX 3X1+4X2+5X3+3X4+2X5yST y2X1+3X2+4X3+5X4+X511 y3X1+4X2+2X3+X4+3X516 y
60、7X1+2X2+5X3+4X4+2X519 yEND:X1bOPX1v0-1CD:X2bOPX2v0-1CD:X3bOPX3v0-1CDULOOK ALLMAX 3X1+4X2+5X3+3X4+2X5 SUBJECT TO2) 2X1+3X2+4X3+5X4+X5=113) 3X1+4X2+2X3+X4+3X5=164) 7X1+2X2+5X3+4X4+2X5=19 ENDEGER-VARIABLES=3UGOb&CDv0-1CDLP OPTIMUM FOUND AT STEP6btu(,-!9OBJECTIVE FUNCTIONVALUE1)16.4000000b(,-!EFG+:VARIA