Golang channel 初探

Goroutine和channel是Golang实现高并发的基础。深入理解其背后的实现,写起代码来才不慌-_-

首先我们定义如下代码,来看看Golang底层是如何实现channel的。

package main

import (
        "fmt"
)

func main() {
        c := make(chan int, 5)
        c <- 1

        g := <-c
        fmt.Println(g)

}

编译后我们看下相关函数

go build -gcflags "-N -l" -o chan chan.go
go tool objdump -s "main\.main" chan

可以看到初始化调用了runtime.makechan,

写channel调用了runtime.chansend1,

读channel调用了runtime.chanrecv1.

在runtime/chan.go中我们找到对应函数

func makechan(t *chantype, size int) *hchan 

返回一个hchan结构,我们先看下channel的结构,我们为一眼可以理解的加点注释。

channel结构

type hchan struct {
   qcount   uint           // total data in the queue 队列中存在的个数
   dataqsiz uint           // size of the circular queue buffer大小 实现看起来是个循环数组
   buf      unsafe.Pointer // points to an array of dataqsiz elements 数组指针
   elemsize uint16       //channel类型的大小
   closed   uint32      //channel是否关闭
   elemtype *_type // element type //channel 类型
   sendx    uint   // send index  //发送index
   recvx    uint   // receive index //接收index
   recvq    waitq  // list of recv waiters //接收链表 即读channel的goroutine
   sendq    waitq  // list of send waiters //发送链表 即写channel的goroutine

   // lock protects all fields in hchan, as well as several
   // fields in sudogs blocked on this channel.
   //
   // Do not change another G's status while holding this lock
   // (in particular, do not ready a G), as this can deadlock
   // with stack shrinking.
   lock mutex
}

接下来来看下到底如何初始化的。

channel初始化

func makechan(t *chantype, size int) *hchan {
	elem := t.elem
   ...
	//一些合法判断 
	

	// Hchan does not contain pointers interesting for GC when elements stored in buf do not contain pointers.
	// buf points into the same allocation, elemtype is persistent.
	// SudoG's are referenced from their owning thread so they can't be collected.
	// TODO(dvyukov,rlh): Rethink when collector can move allocated objects.
	var c *hchan
	switch {
	//channel buffer大小为0 或者类型大小为0
	case size == 0 || elem.size == 0:
		// Queue or element size is zero.
		c = (*hchan)(mallocgc(hchanSize, nil, true))
		// Race detector uses this location for synchronization.
		c.buf = unsafe.Pointer(c)
		
		//channel非指针
	case elem.kind&kindNoPointers != 0:
		// Elements do not contain pointers.
		// Allocate hchan and buf in one call.
		c = (*hchan)(mallocgc(hchanSize+uintptr(size)*elem.size, nil, true))
		c.buf = add(unsafe.Pointer(c), hchanSize)
	default:
		// Elements contain pointers.
		c = new(hchan)
		c.buf = mallocgc(uintptr(size)*elem.size, elem, true)
	}

	c.elemsize = uint16(elem.size)
	c.elemtype = elem
	c.dataqsiz = uint(size)

	if debugChan {
		print("makechan: chan=", c, "; elemsize=", elem.size, "; elemalg=", elem.alg, "; dataqsiz=", size, "\n")
	}
	return c
}

可以看出主要是根据channel类型以及buffer大小申请hcan.buf的内存,同时设置对应的datasiz、elemsize等,比较简单。

那么写channel是怎么实现的呢

写channel

c<-1这种形式的写channel会调用chansend1

// entry point for c <- x from compiled code
//go:nosplit
func chansend1(c *hchan, elem unsafe.Pointer) {
	chansend(c, elem, true, getcallerpc())
}


看源码还有select的selectnbsend,reflect的reflect_chansend,

它们最后都会调用chansend,所以只用看chansend的实现,它们只是参数不一样而已。

/*
 * generic single channel send/recv
 * If block is not nil,
 * then the protocol will not
 * sleep but return if it could
 * not complete.
 *
 * sleep can wake up with g.param == nil
 * when a channel involved in the sleep has
 * been closed.  it is easiest to loop and re-run
 * the operation; we'll see that it's now closed.
 */
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
    //如果设置了block为true 且channel为nil,goroutine将会死在这
	if c == nil {
		if !block {
			return false
		}
		gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
		throw("unreachable")
	}
	//忽略一些无用代码
	.....
	//block false  channel没buffer或者已满 直接返回
	if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||
		(c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {
		return false
	}

	...
	
	lock(&c.lock)
    //写已经关闭的channel 将会panic
	if c.closed != 0 {
		unlock(&c.lock)
		panic(plainError("send on closed channel"))
	}

    //优先检查读队列是否有等待的goroutine,有的话直接调用并返回
	if sg := c.recvq.dequeue(); sg != nil {
		// Found a waiting receiver. We pass the value we want to send
		// directly to the receiver, bypassing the channel buffer (if any).
		send(c, sg, ep, func() { unlock(&c.lock) }, 3)
		return true
	}
    
    //channel有buffer可以写
	if c.qcount < c.dataqsiz {
		// Space is available in the channel buffer. Enqueue the element to send.
		//根据sendx计算该数据在数组的位置
		qp := chanbuf(c, c.sendx)
		if raceenabled {
			raceacquire(qp)
			racerelease(qp)
		}
		//拷贝过去
		typedmemmove(c.elemtype, qp, ep)
		c.sendx++
		if c.sendx == c.dataqsiz {
			c.sendx = 0
		}
		//计数
		c.qcount++
		unlock(&c.lock)
		return true
	}
    //没buffer 且block false直接返回
	if !block {
		unlock(&c.lock)
		return false
	}
   //没buffer写 初始化一个sudog结构
   
	// Block on the channel. Some receiver will complete our operation for us.
	gp := getg()
	mysg := acquireSudog()
	mysg.releasetime = 0
	if t0 != 0 {
		mysg.releasetime = -1
	}
	// No stack splits between assigning elem and enqueuing mysg
	// on gp.waiting where copystack can find it.
	
	//将该数据放在sudog的elem里,所以没buffer的channel数据其实在调用的goroutine里
	mysg.elem = ep
	mysg.waitlink = nil
	mysg.g = gp
	mysg.isSelect = false
	mysg.c = c
	gp.waiting = mysg
	gp.param = nil
	
	//放到channel的写队列,并阻塞
	c.sendq.enqueue(mysg)
	goparkunlock(&c.lock, "chan send", traceEvGoBlockSend, 3)

	// someone woke us up.
	if mysg != gp.waiting {
		throw("G waiting list is corrupted")
	}
	gp.waiting = nil
	if gp.param == nil {
		if c.closed == 0 {
			throw("chansend: spurious wakeup")
		}
		panic(plainError("send on closed channel"))
	}
	gp.param = nil
	if mysg.releasetime > 0 {
		blockevent(mysg.releasetime-t0, 2)
	}
	mysg.c = nil
	releaseSudog(mysg)
	return true

​ 整个写channel的逻辑还是很清晰的。 参照这个其实读channel差不多可以推断出是个对应的逻辑。

读channel

我们还是在runtime/chan.go中找到相关代码

// entry points for <- c from compiled code
//go:nosplit
func chanrecv1(c *hchan, elem unsafe.Pointer) {
	chanrecv(c, elem, true)
}

读channel还有chanrecv2,selectnbrecv,selectnbrecv2,reflect_chanrecv。跟写channel一样,

它们之间也是参数的区别。

我们继续看chanrecv

// chanrecv receives on channel c and writes the received data to ep.
// ep may be nil, in which case received data is ignored.
// If block == false and no elements are available, returns (false, false).
// Otherwise, if c is closed, zeros *ep and returns (true, false).
// Otherwise, fills in *ep with an element and returns (true, true).
// A non-nil ep must point to the heap or the caller's stack.
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
	// raceenabled: don't need to check ep, as it is always on the stack
	// or is new memory allocated by reflect.

	if debugChan {
		print("chanrecv: chan=", c, "\n")
	}
    //block true的时候读nil的channel 将会永远阻塞
	if c == nil {
		if !block {
			return
		}
		gopark(nil, nil, "chan receive (nil chan)", traceEvGoStop, 2)
		throw("unreachable")
	}
	
    //block false的时候 判断channel buffer 已满或者没buffer 没有读的goroutine就直接返回
	if !block && (c.dataqsiz == 0 && c.sendq.first == nil ||
		c.dataqsiz > 0 && atomic.Loaduint(&c.qcount) == 0) &&
		atomic.Load(&c.closed) == 0 {
		return
	}

	

	lock(&c.lock)
     //如果channel已空 且没有读的数据 清除并退出
	if c.closed != 0 && c.qcount == 0 {
		if raceenabled {
			raceacquire(unsafe.Pointer(c))
		}
		unlock(&c.lock)
		if ep != nil {
			typedmemclr(c.elemtype, ep)
		}
		return true, false
	}
    //还是优先检查写队列 拿出阻塞的goroutine
	if sg := c.sendq.dequeue(); sg != nil {
		// Found a waiting sender. If buffer is size 0, receive value
		// directly from sender. Otherwise, receive from head of queue
		// and add sender's value to the tail of the queue (both map to
		// the same buffer slot because the queue is full).
		recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
		return true, true
	}
    //buffer中有数据 跟写对应处理
	if c.qcount > 0 {
		// Receive directly from queue
		qp := chanbuf(c, c.recvx)
		if raceenabled {
			raceacquire(qp)
			racerelease(qp)
		}
		if ep != nil {
			typedmemmove(c.elemtype, ep, qp)
		}
		typedmemclr(c.elemtype, qp)
		c.recvx++
		if c.recvx == c.dataqsiz {
			c.recvx = 0
		}
		c.qcount--
		unlock(&c.lock)
		return true, true
	}

	if !block {
		unlock(&c.lock)
		return false, false
	}
    //没有数据读 初始化一个sudog并阻塞
	// no sender available: block on this channel.
	gp := getg()
	mysg := acquireSudog()
	mysg.releasetime = 0
	if t0 != 0 {
		mysg.releasetime = -1
	}
	// No stack splits between assigning elem and enqueuing mysg
	// on gp.waiting where copystack can find it.
	mysg.elem = ep
	mysg.waitlink = nil
	gp.waiting = mysg
	mysg.g = gp
	mysg.isSelect = false
	mysg.c = c
	gp.param = nil
	
	//把自己放到读队列
	c.recvq.enqueue(mysg)
	goparkunlock(&c.lock, "chan receive", traceEvGoBlockRecv, 3)

	// someone woke us up
	if mysg != gp.waiting {
		throw("G waiting list is corrupted")
	}
	gp.waiting = nil
	if mysg.releasetime > 0 {
		blockevent(mysg.releasetime-t0, 2)
	}
	closed := gp.param == nil
	gp.param = nil
	mysg.c = nil
	releaseSudog(mysg)
	return true, !closed
}

关channel

最后我们来看看close channel

func closechan(c *hchan) {
//关nil channel直接panic
	if c == nil {
		panic(plainError("close of nil channel"))
	}

	lock(&c.lock)
	//重复关闭 panic
	if c.closed != 0 {
		unlock(&c.lock)
		panic(plainError("close of closed channel"))
	}

	if raceenabled {
		callerpc := getcallerpc()
		racewritepc(unsafe.Pointer(c), callerpc, funcPC(closechan))
		racerelease(unsafe.Pointer(c))
	}
 //设置channel标记
	c.closed = 1

	var glist *g

	// release all readers
	for {
	   //通知所有的读goroutine
		sg := c.recvq.dequeue()
		if sg == nil {
			break
		}
		if sg.elem != nil {
			typedmemclr(c.elemtype, sg.elem)
			sg.elem = nil
		}
		if sg.releasetime != 0 {
			sg.releasetime = cputicks()
		}
		gp := sg.g
		gp.param = nil
		if raceenabled {
			raceacquireg(gp, unsafe.Pointer(c))
		}
		gp.schedlink.set(glist)
		glist = gp
	}

	// release all writers (they will panic)
	for {
		sg := c.sendq.dequeue()
		if sg == nil {
			break
		}
		sg.elem = nil
		if sg.releasetime != 0 {
			sg.releasetime = cputicks()
		}
		gp := sg.g
		gp.param = nil
		if raceenabled {
			raceacquireg(gp, unsafe.Pointer(c))
		}
		gp.schedlink.set(glist)
		glist = gp
	}
	unlock(&c.lock)

	// Ready all Gs now that we've dropped the channel lock.
	for glist != nil {
		gp := glist
		glist = glist.schedlink.ptr()
		gp.schedlink = 0
		goready(gp, 3)
	}
}