本文基于golang 1.14 对sync.Pool进行分析;

sync.Pool在1.12中实现的原理简述

参考 Golang 的 sync.Pool设计思路与原理,这篇文章基于1.12版本对golang的sync.Pool实现原理进行了分析。关于sync.Pool的使用场景、基本概念的理解可以参考前面的文章。

在1.12中sync.Pool的设计思路简单总结一下:

  1. 将 G 和 P 绑定,设置与P绑定的M禁止抢占以防止 G 被抢占。在绑定期间,GC 无法清理缓存的对象。
  2. 每个p都有独享的缓存队列,当g进行sync.pool操作时,先找到所属p的private,如果没有对象可用,加锁从 shared切片里获取数据。如果还没有拿到缓存对象,那么到其他P的poolLocal进行偷数据,如果偷不到,那么就创建新对象。

1.12 sync.pool的源码,可以发现sync.pool里会有各种的锁逻辑,从自己的shared拿数据加锁。getSlow()偷其他P缓存,也是需要给每个p加锁。put归还缓存的时候,还是会mutex加一次锁。

go mutex锁的实现原理简单说,他开始也是atomic cas自旋,默认是4次尝试,当还没有拿到锁的时候进行waitqueue gopack休眠调度处理,等待其他协程释放锁时进行goready调度唤醒。

Go 1.13之后,Go 团队对sync.Pool的锁竞争这块进行了很多优化,这里还改变了shared的数据结构,以前的版本用切片做缓存,现在换成了poolChain双端链表。这个双端链表的设计很有意思,你看sync.pool源代码会发现跟redis quicklist相似,都是链表加数组的设计。

1.14 Pool 数据结构
type Pool struct {
	noCopy noCopy

	local     unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
	localSize uintptr        // size of the local array

	victim     unsafe.Pointer // local from previous cycle
	victimSize uintptr        // size of victims array

	// New optionally specifies a function to generate
	// a value when Get would otherwise return nil.
	// It may not be changed concurrently with calls to Get.
	New func() interface{}
}

// Local per-P Pool appendix.
type poolLocalInternal struct {
	private interface{} // Can be used only by the respective P.
	shared  poolChain   // Local P can pushHead/popHead; any P can popTail.
}

type poolLocal struct {
	poolLocalInternal

	// Prevents false sharing on widespread platforms with
	// 128 mod (cache line size) = 0 .
	pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
}
Pool.local[P]poolLocal
poolLocalInternal.shared

这里我们先重点分析一下poolChain 是怎么实现并发无锁编程的。

poolChain

type poolChain struct {
	// head is the poolDequeue to push to. This is only accessed
	// by the producer, so doesn't need to be synchronized.
	head *poolChainElt

	// tail is the poolDequeue to popTail from. This is accessed
	// by consumers, so reads and writes must be atomic.
	tail *poolChainElt
}

type poolChainElt struct {
	poolDequeue

	// next and prev link to the adjacent poolChainElts in this
	// poolChain.
	//
	// next is written atomically by the producer and read
	// atomically by the consumer. It only transitions from nil to
	// non-nil.
	//
	// prev is written atomically by the consumer and read
	// atomically by the producer. It only transitions from
	// non-nil to nil.
	next, prev *poolChainElt
}
poolChain也就是说poolChain里面每个元素poolChainElt都是一个双端队列

head指向的poolChainElt,是用于Producer去Push元素的,不需要做同步处理。
tail指向的poolChainElt,是用于Consumer从tail去pop元素的,这里的读写需要保证原子性。

poolChain
poolChainpoolDequeue
poolChain
popHead() (interface{}, bool);
pushHead(val interface{}) 

popTail() (interface{}, bool)
popHeadpushHeadpopTail

poolChain.popHead()

poolChain
func (c *poolChain) popHead() (interface{}, bool) {
	d := c.head
	for d != nil {
		if val, ok := d.popHead(); ok {
			return val, ok
		}
		// There may still be unconsumed elements in the
		// previous dequeue, so try backing up.
		d = loadPoolChainElt(&d.prev)
	}
	return nil, false
}
popHead
poolDequeuepopHeadpoolDequeuepopHeadpoolChainpopHeadpoolDequeue

poolChain.pushHead()

func (c *poolChain) pushHead(val interface{}) {
	d := c.head
	if d == nil {
		// Initialize the chain.
		const initSize = 8 // Must be a power of 2
		d = new(poolChainElt)
		d.vals = make([]eface, initSize)
		c.head = d
		storePoolChainElt(&c.tail, d)
	}

	if d.pushHead(val) {
		return
	}

	// The current dequeue is full. Allocate a new one of twice
	// the size.
	newSize := len(d.vals) * 2
	if newSize >= dequeueLimit {
		// Can't make it any bigger.
		newSize = dequeueLimit
	}

	d2 := &poolChainElt{prev: d}
	d2.vals = make([]eface, newSize)
	c.head = d2
	storePoolChainElt(&d.next, d2)
	d2.pushHead(val)
}
pushHead
poolChainEltpoolChainEltpoolDequeuepoolDequeuepushHeadpoolDequeue

这里需要注意一点的是head其实是指向最后chain中最后一个结点(poolDequeue),chain执行push操作是往最后一个节点push。 所以这里的head的语义不是针对链表结构,而是针对队列结构。

poolChain.popTail()

func (c *poolChain) popTail() (interface{}, bool) {
	d := loadPoolChainElt(&c.tail)
	if d == nil {
		return nil, false
	}

	for {
		// It's important that we load the next pointer
		// *before* popping the tail. In general, d may be
		// transiently empty, but if next is non-nil before
		// the pop and the pop fails, then d is permanently
		// empty, which is the only condition under which it's
		// safe to drop d from the chain.
		d2 := loadPoolChainElt(&d.next)

		if val, ok := d.popTail(); ok {
			return val, ok
		}

		if d2 == nil {
			// This is the only dequeue. It's empty right
			// now, but could be pushed to in the future.
			return nil, false
		}

		// The tail of the chain has been drained, so move on
		// to the next dequeue. Try to drop it from the chain
		// so the next pop doesn't have to look at the empty
		// dequeue again.
		if atomic.CompareAndSwapPointer((*unsafe.Pointer)(unsafe.Pointer(&c.tail)), unsafe.Pointer(d), unsafe.Pointer(d2)) {
			// We won the race. Clear the prev pointer so
			// the garbage collector can collect the empty
			// dequeue and so popHead doesn't back up
			// further than necessary.
			storePoolChainElt(&d2.prev, nil)
		}
		d = d2
	}
}
popTail
popTail
poolDequeue

上面的流程是典型的的无锁并发编程。

poolDequeue

poolDequeue
poolDequeue

数据结构

type poolDequeue struct {
	// 用高32位和低32位分别表示head和tail
	// head是下一个fill的slot的index;
	// tail是deque中最老的一个元素的index
	// 队列中有效元素是[tail, head)
	headTail uint64

	vals []eface
}

type eface struct {
	typ, val unsafe.Pointer
}
headTailheadTail
  1. 高32位表示head;
  2. 低32位表示tail。
  3. head和tail自加溢出时是安全的。
valsring buffer

pack/unpack

headTail
const dequeueBits = 32

func (d *poolDequeue) unpack(ptrs uint64) (head, tail uint32) {
	const mask = 1<<dequeueBits - 1
	head = uint32((ptrs >> dequeueBits) & mask)
	tail = uint32(ptrs & mask)
	return
}

func (d *poolDequeue) pack(head, tail uint32) uint64 {
	const mask = 1<<dequeueBits - 1
	return (uint64(head) << dequeueBits) |
		uint64(tail&mask)
}

pack:

  1. 首先拿到mask,这里实际上就是 0xffffffff(2^32-1)
  2. head左移32位 | tail&0xffffffff 就可以得到head和tail pack之后的值。

unpack:

  1. 首先拿到mask,这里实际上就是 0xffffffff(2^32-1)
  2. ptrs右移32位拿到高32位然后 & mask 就可以得到head;
  3. ptrs直接 & mask 就可以得到低32位,也就是tail。

poolDequeue.pushHead

pushHead
func (d *poolDequeue) pushHead(val interface{}) bool {
	ptrs := atomic.LoadUint64(&d.headTail)
	head, tail := d.unpack(ptrs)
	if (tail+uint32(len(d.vals)))&(1<<dequeueBits-1) == head {
		// Queue is full.
		return false
	}
	slot := &d.vals[head&uint32(len(d.vals)-1)]

	// Check if the head slot has been released by popTail.
	typ := atomic.LoadPointer(&slot.typ)
	if typ != nil {
		// Another goroutine is still cleaning up the tail, so
		// the queue is actually still full.
		return false
	}

	// The head slot is free, so we own it.
	if val == nil {
		val = dequeueNil(nil)
	}
	*(*interface{})(unsafe.Pointer(slot)) = val

	// Increment head. This passes ownership of slot to popTail
	// and acts as a store barrier for writing the slot.
	atomic.AddUint64(&d.headTail, 1<<dequeueBits)
	return true
}

主要逻辑:

  1. 原子load head和tail,
  2. 如果tail + len(vals) == head 说明deque已经满了。
  3. 拿到head在vals中index的slot
  4. 如果slot的type非空,说明该slot还没有被popTail release,实际上deque还是满的;所以直接return false;
  5. 更新val到slot的指针指向的值。
  6. 原子的自加head

需要注意的是,pushHead不是并发安全的,只能有一个Producer去执行;只有slot的的type指针为空时候slot才是空。

poolDequeue.popHead

popHead
func (d *poolDequeue) popHead() (interface{}, bool) {
	var slot *eface
	for {
		ptrs := atomic.LoadUint64(&d.headTail)
		head, tail := d.unpack(ptrs)
		if tail == head {
			// Queue is empty.
			return nil, false
		}

		// Confirm tail and decrement head. We do this before
		// reading the value to take back ownership of this
		// slot.
		head--
		ptrs2 := d.pack(head, tail)
		if atomic.CompareAndSwapUint64(&d.headTail, ptrs, ptrs2) {
			// We successfully took back slot.
			slot = &d.vals[head&uint32(len(d.vals)-1)]
			break
		}
	}

	val := *(*interface{})(unsafe.Pointer(slot))
	if val == dequeueNil(nil) {
		val = nil
	}
	// Zero the slot. Unlike popTail, this isn't racing with
	// pushHead, so we don't need to be careful here.
	*slot = eface{}
	return val, true
}

主要逻辑:

poolDequeue.headTailpoolDequeue.headTailatomic.CompareAndSwapUint64(&d.headTail, ptrs, ptrs2)

poolDequeue.popTail

这个函数是可以被Consumer并发访问的。

func (d *poolDequeue) popTail() (interface{}, bool) {
	var slot *eface
	for {
		ptrs := atomic.LoadUint64(&d.headTail)
		head, tail := d.unpack(ptrs)
		if tail == head {
			// Queue is empty.
			return nil, false
		}

		// Confirm head and tail (for our speculative check
		// above) and increment tail. If this succeeds, then
		// we own the slot at tail.
		ptrs2 := d.pack(head, tail+1)
		if atomic.CompareAndSwapUint64(&d.headTail, ptrs, ptrs2) {
			// Success.
			slot = &d.vals[tail&uint32(len(d.vals)-1)]
			break
		}
	}

	// We now own slot.
	val := *(*interface{})(unsafe.Pointer(slot))
	if val == dequeueNil(nil) {
		val = nil
	}

	// Tell pushHead that we're done with this slot. Zeroing the
	// slot is also important so we don't leave behind references
	// that could keep this object live longer than necessary.
	//
	// We write to val first and then publish that we're done with
	// this slot by atomically writing to typ.
	slot.val = nil
	atomic.StorePointer(&slot.typ, nil)
	// At this point pushHead owns the slot.

	return val, true
}

主要逻辑:

atomic.CompareAndSwapUint64(&d.headTail, ptrs, ptrs2)

数据结构总结

用一张图完整描述sync.Pool的数据结构:

强调一点:

  1. head的操作只能是local P;
  2. tail的操作是任意P;

参考网上一张图来看更加清晰:

Pool 并没有直接使用 poolDequeue,因为它是fixed size的,而 Pool 的大小是没有限制的。因此,在 poolDequeue 之上包装了一下,变成了一个 poolChainElt 的双向链表,可以动态增长。

Pool.Put
func (p *Pool) Put(x interface{}) {
	if x == nil {
		return
	}

	l, _ := p.pin()
	if l.private == nil {
		l.private = x
		x = nil
	}
	if x != nil {
		l.shared.pushHead(x)
	}
	runtime_procUnpin()
}

func (p *Pool) pin() (*poolLocal, int) {
	pid := runtime_procPin()
	// In pinSlow we store to local and then to localSize, here we load in opposite order.
	// Since we've disabled preemption, GC cannot happen in between.
	// Thus here we must observe local at least as large localSize.
	// We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).
	s := atomic.LoadUintptr(&p.localSize) // load-acquire
	l := p.local                          // load-consume
	if uintptr(pid) < s {
		return indexLocal(l, pid), pid
	}
	return p.pinSlow()
}

func (p *Pool) pinSlow() (*poolLocal, int) {
	// Retry under the mutex.
	// Can not lock the mutex while pinned.
	runtime_procUnpin()
	allPoolsMu.Lock()
	defer allPoolsMu.Unlock()
	pid := runtime_procPin()
	// poolCleanup won't be called while we are pinned.
	s := p.localSize
	l := p.local
	if uintptr(pid) < s {
		return indexLocal(l, pid), pid
	}
	if p.local == nil {
		allPools = append(allPools, p)
	}
	// If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one.
	size := runtime.GOMAXPROCS(0)
	local := make([]poolLocal, size)
	atomic.StorePointer(&p.local, unsafe.Pointer(&local[0])) // store-release
	atomic.StoreUintptr(&p.localSize, uintptr(size))         // store-release
	return &local[pid], pid
}

Put函数主要逻辑:

p.pin()p.pin()pinSlow()allPoolsMushared.pushHead(x)
Pool.Get
func (p *Pool) Get() interface{} {
	l, pid := p.pin()
	x := l.private
	l.private = nil
	if x == nil {
		// Try to pop the head of the local shard. We prefer
		// the head over the tail for temporal locality of
		// reuse.
		x, _ = l.shared.popHead()
		if x == nil {
			x = p.getSlow(pid)
		}
	}
	runtime_procUnpin()
	if x == nil && p.New != nil {
		x = p.New()
	}
	return x
}

func (p *Pool) getSlow(pid int) interface{} {
	// See the comment in pin regarding ordering of the loads.
	size := atomic.LoadUintptr(&p.localSize) // load-acquire
	locals := p.local                        // load-consume
	// Try to steal one element from other procs.
	for i := 0; i < int(size); i++ {
		l := indexLocal(locals, (pid+i+1)%int(size))
		if x, _ := l.shared.popTail(); x != nil {
			return x
		}
	}

	// Try the victim cache. We do this after attempting to steal
	// from all primary caches because we want objects in the
	// victim cache to age out if at all possible.
	size = atomic.LoadUintptr(&p.victimSize)
	if uintptr(pid) >= size {
		return nil
	}
	locals = p.victim
	l := indexLocal(locals, pid)
	if x := l.private; x != nil {
		l.private = nil
		return x
	}
	for i := 0; i < int(size); i++ {
		l := indexLocal(locals, (pid+i)%int(size))
		if x, _ := l.shared.popTail(); x != nil {
			return x
		}
	}

	// Mark the victim cache as empty for future gets don't bother
	// with it.
	atomic.StoreUintptr(&p.victimSize, 0)

	return nil
}

Get函数主要逻辑:

getSlow(pid)

这里是一个很明显的多层级缓存优化 + GPM调度结合起来。

private -> shared -> steal from other P -> victim cache -> New
victim cache优化与GC

对于Pool来说并不能够无上限的扩展,否则对象占用内存太多了,会引起内存溢出。

几乎所有的池技术中,都会在某个时刻清空或清除部分缓存对象,那么在 Go 中何时清理未使用的对象呢?

init函数
func init() {
	runtime_registerPoolCleanup(poolCleanup)
}

// mgc.go
//go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
func sync_runtime_registerPoolCleanup(f func()) {
	poolcleanup = f
}
runtime_registerPoolCleanupsync_runtime_registerPoolCleanup
gcStart() -> clearpools() -> poolcleanup()

也就是每一轮GC开始都会执行pool的清除操作。

func poolCleanup() {
	// This function is called with the world stopped, at the beginning of a garbage collection.
	// It must not allocate and probably should not call any runtime functions.

	// Because the world is stopped, no pool user can be in a
	// pinned section (in effect, this has all Ps pinned).

	// Drop victim caches from all pools.
	for _, p := range oldPools {
		p.victim = nil
		p.victimSize = 0
	}

	// Move primary cache to victim cache.
	for _, p := range allPools {
		p.victim = p.local
		p.victimSize = p.localSize
		p.local = nil
		p.localSize = 0
	}

	// The pools with non-empty primary caches now have non-empty
	// victim caches and no pools have primary caches.
	oldPools, allPools = allPools, nil
}

poolCleanup 会在 STW 阶段被调用。整体看起来,比较简洁。主要是将 local 和 victim 作交换,这样也就不致于让 GC 把所有的 Pool 都清空了,有 victim 在“兜底”。

对象可能会在两个 GC 周期内被释放,而不是以前的一个 GC 周期。

在Go1.13之前的poolCleanup比较粗暴,直接清空了所有 Pool 的 p.local 和poolLocal.shared。

通过两者的对比发现,新版的实现相比 Go 1.13 之前,GC 的粒度拉大了,由于实际回收的时间线拉长,单位时间内 GC 的开销减小。

所以 p.victim 的作用其实就是次级缓存。

sync.Pool 总结
  1. 关键思想是对象的复用,避免重复创建、销毁。将暂时不用的对象缓存起来,待下次需要的时候直接使用,不用再次经过内存分配,复用对象的内存,减轻 GC 的压力。
  2. sync.Pool 是协程安全的,使用起来非常方便。设置好 New 函数后,调用 Get 获取,调用 Put 归还对象。
  3. 不要对 Get 得到的对象有任何假设,默认Get到对象是一个空对象,Get之后手动初始化。
  4. 好的实践是:Put操作执行前将对象“清空”,并且确保对象被Put进去之后不要有任何的指针引用再次使用,不然极大概率导致data race。
  5. 第三和第四也就是考虑清楚复用对象的生命周期
  6. Pool 里对象的生命周期受 GC 影响,不适合于做连接池,因为连接池需要自己管理对象的生命周期。
  7. Pool 不可以指定⼤⼩,⼤⼩只受制于 GC 临界值。
  8. procPin 将 G 和 P 绑定,防止 G 被抢占。在绑定期间,GC 无法清理缓存的对象。
  9. 在加入 victim 机制前,sync.Pool 里对象的最⼤缓存时间是一个 GC 周期,当 GC 开始时,没有被引⽤的对象都会被清理掉;加入 victim 机制后,最大缓存时间为两个 GC 周期。
  10. Victim Cache 本来是计算机架构里面的一个概念,是 CPU 硬件处理缓存的一种技术,sync.Pool 引入的意图在于降低 GC 压力的同时提高命中率。
  11. sync.Pool 的最底层使用切片加链表来实现双端队列,并将缓存的对象存储在切片中。
  12. sync.Pool 的设计理念,包括:无锁、操作对象隔离、原子操作代替锁、行为隔离——链表、Victim Cache 降低 GC 开销。

参考文档:
理解Go 1.13中sync.Pool的设计与实现
golang新版如何优化sync.pool锁竞争消耗?
深度解密 Go 语言之 sync.Pool