分享老师:学而思网校 郭雨田
一、map的结构与设计原理
golang中map是一个kv对集合。底层使用hash table,用链表来解决冲突 ,出现冲突时,不是每一个key都申请一个结构通过链表串起来,而是以bmap为最小粒度挂载,一个bmap可以放8个kv。在哈希函数的选择上,会在程序启动时,检测 cpu 是否支持 aes,如果支持,则使用 aes hash,否则使用 memhash。每个map的底层结构是hmap,是有若干个结构为bmap的bucket组成的数组。每个bucket底层都采用链表结构。接下来,我们来详细看下map的结构:
// A header for a Go map.type hmap struct { count int // 元素个数 flags uint8 B uint8 // 扩容常量相关字段B是buckets数组的长度的对数 2^B noverflow uint16 // 溢出的bucket个数 hash0 uint32 // hash seed buckets unsafe.Pointer // buckets 数组指针 oldbuckets unsafe.Pointer // 结构扩容的时候用于赋值的buckets数组 nevacuate uintptr // 搬迁进度 extra *mapextra // 用于扩容的指针}type mapextra struct { overflow *[]*bmap oldoverflow *[]*bmap nextOverflow *bmap}// A bucket for a Go map.type bmap struct { tophash [bucketCnt]uint8 // len为8的数组}//底层定义的常量 const ( // Maximum number of key/value pairs a bucket can hold. bucketCntBits = 3 bucketCnt = 1 << bucketCntBits)
但这只是表面(src/runtime/hashmap.go)的结构,编译期间会给它加料,动态地创建一个新的结构:
type bmap struct { topbits [8]uint8 keys [8]keytype values [8]valuetype pad uintptr overflow uintptr}
hmap和bmap的结构是这样的 :
bmap
就是我们常说的“桶”,桶里面会最多装 8 个 key,这些 key 之所以会落入同一个桶,是因为它们经过哈希计算后,哈希结果是“一类”的,关于key的定位我们在map的查询和赋值中详细说明。在桶内,又会根据 key 计算出来的 hash 值的高 8 位来决定 key 到底落入桶内的哪个位置(一个桶内最多有8个位置)。当 map 的 key 和 value 都不是指针,并且 size 都小于 128 字节的情况下,会把 bmap 标记为不含指针,这样可以避免 gc 时扫描整个 hmap。但是,我们看 bmap 其实有一个 overflow 的字段,是指针类型的,破坏了 bmap 不含指针的设想,这时会把 overflow 移动到 hmap的extra 字段来。这部分我们在分析扩容操作的时候再详细说明。下面我们看下bmap的内部组成图:HOBHash
指的就是 top hash,每个bucket中topHash唯一。key 和 value 是各自放在一起的,并不是 key/value/...
这样的形式。可以省略掉 padding 字段,节省内存空间。例如,有这样一个类型的 map:map[int64]int8
,如果按照 key/value...
这样的模式存储,那在每一个 key/value 对之后都要额外 padding 7 个字节;而将所有的 key,value 分别绑定到一起,这种形式 key/key/.../value/value/...
,则只需要在最后添加 padding,每个 bucket 设计成最多只能放 8 个 key-value 对,如果有第 9 个 key-value 落入当前的 bucket,那就需要再构建一个 bucket ,通过 overflow
指针连接起来。二、map操作底层原理分析
1、map初始化:
方法1:var m map[string]string // 声明变量 --nil map 支持查询 返回类型默认值 赋值、delete操作会panicm = make(map[string]string, 10) // 初始化 --empty map 可以进行赋值操作了方法2:m := make(map[string]string,10) // 容量参数可省略方法3:m := map[string]string{ // 通过直接赋值进行初始化 "test": "test", "name": "lili", "age": "one", }
第一步:入参校验,判断key的类型是否合法,必须为可比较类型。第二步:底层调用makemap函数,计算得到合适的B,map容量最多可容纳6.5*2^B个元素,6.5为装载因子阈值常量。装载因子的计算公式是:装载因子=填入表中的元素个数/散列表的长度,装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。func makemap(t *maptype, hint int, h *hmap) *hmap {//边界校验 if hint < 0 || hint > int(maxSliceCap(t.bucket.size)) { hint = 0 }// initialize Hmap if h == nil { h = new(hmap) }//生成hash种子 h.hash0 = fastrand() // find size parameter which will hold the requested # of elements B := uint8(0)//计算得到合适的B for overLoadFactor(hint, B) { B++ } h.B = B // allocate initial hash table // if B == 0, the buckets field is allocated lazily later (in mapassign) // If hint is large zeroing this memory could take a while.//申请桶空间 if h.B != 0 { var nextOverflow *bmap h.buckets, nextOverflow = makeBucketArray(t, h.B, nil) if nextOverflow != nil { h.extra = new(mapextra) h.extra.nextOverflow = nextOverflow } } return h}//常量loadFactorNum=13 ,loadFactorDen=2func overLoadFactor(count int, B uint8) bool { return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
fastrandhintmakeBucketArrayB2^(B-4)
2、查找操作Go 语言中读取 map 有两种语法:带 comma 和 不带 comma。当要查询的 key 不在 map 里,带 comma 的用法会返回一个 bool 型变量提示 key 是否在 map 中;而不带 comma 的语句则会返回一个 value 类型的零值。如果 value 是 int 型就会返回 0,如果 value 是 string 类型,就会返回空字符串。
value := m["name"]fmt.Printf("value:%s", value)value, ok := m["name"] if ok { fmt.Printf("value:%s", value) }
两种语法对应到底层两个不同的函数,那么在底层是如何定位到key的呢?稍后我们对函数进行源码分析。
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointerfunc mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool)
key的定位:
key 经过哈希计算后得到哈希值,共 64 个 bit 位(64位机,32位机就不讨论了,现在主流都是64位机),计算它到底要落在哪个桶时,只会用到最后 B 个 bit 位。还记得前面提到过的 B 吗?如果 B = 5,那么桶的数量,也就是 buckets 数组的长度是 2^5 = 32。例如,现在有一个 key 经过哈希函数计算后,得到的哈希结果是:用最后的 5 个 bit 位,也就是01010
,值为 10,也就是 10 号桶。这个操作实际上就是取余操作,但是取余开销太大,所以代码实现上用的位操作代替。再用哈希值的高 8 位,找到此 key 在 bucket 中的位置,这是在寻找已有的 key。最开始桶内还没有 key,新加入的 key 会找到第一个空位放入。buckets 编号就是桶编号,当两个不同的 key 落在同一个桶中,也就是发生了哈希冲突。冲突的解决手段是用链表法:在 bucket 中,从前往后找到第一个空位。这样,在查找某个 key 时,先找到对应的桶,再去遍历 bucket 中的 key。上图中,假定 B = 5,所以 bucket 总数就是 2^5 = 32。首先计算出待查找 key 的哈希,使用低 5 位 00110
,找到对应的 6 号 bucket,使用高 8 位 10010111
,对应十进制 151,在 6 号 bucket 中寻找 tophash 值(HOB hash)为 151 的 key,找到了 2 号槽位,这样整个查找过程就结束了。如果在 bucket 中没找到,并且 overflow 不为空,还要继续去 overflow bucket 中寻找,直到找到或是所有的 key 槽位都找遍了,包括所有的 overflow bucket。接下来我们看下底层函数源码:func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { //... // 如果 h 什么都没有,返回零值 if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]) } // 写和读冲突 if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } // 不同类型 key 使用的 hash 算法在编译期确定 alg := t.key.alg // 计算哈希值,并且加入 hash0 引入随机性 hash := alg.hash(key, uintptr(h.hash0)) // 比如 B=5,那 m 就是31,二进制是全 1 // 求 bucket num 时,将 hash 与 m 相与, // 达到 bucket num 由 hash 的低 8 位决定的效果 m := bucketMask(h.B) // b 就是 bucket 的地址 b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize))) // oldbuckets 不为 nil,说明发生了扩容 if c := h.oldbuckets; c != nil { // 如果不是同 size 扩容(看后面扩容的内容) // 对应条件 1 的解决方案 if !h.sameSizeGrow() { // 新 bucket 数量是老的 2 倍 m >>= 1 } // 求出 key 在老的 map 中的 bucket 位置 oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) // 如果 oldb 没有搬迁到新的 bucket // 那就在老的 bucket 中寻找 if !evacuated(oldb) { b = oldb } } // 计算出高 8 位的 hash // 相当于右移 56 位,只取高8位 top := tophash(hash) //开始寻找key for ; b != nil; b = b.overflow(t) { // 遍历 8 个 bucket for i := uintptr(0); i < bucketCnt; i++ { // tophash 不匹配,继续 if b.tophash[i] != top { continue } // tophash 匹配,定位到 key 的位置 k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) // key 是指针 if t.indirectkey { // 解引用 k = *((*unsafe.Pointer)(k)) } // 如果 key 相等 if alg.equal(key, k) { // 定位到 value 的位置 v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) // value 解引用 if t.indirectvalue { v = *((*unsafe.Pointer)(v)) } return v } } } return unsafe.Pointer(&zeroVal[0])}
这里我们再详细分析下key/value值是如何获取的:
// key 定位公式k :=add(unsafe.Pointer(b),dataOffset+i*uintptr(t.keysize))// value 定位公式v:= add(unsafe.Pointer(b),dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))//对于 bmap 起始地址的偏移:dataOffset = unsafe.Offsetof(struct{ b bmap v int64}{}.v)
bucket 里 key 的起始地址就是 unsafe.Pointer(b)+dataOffset。第 i 个 key 的地址就要在此基础上跨过 i 个 key 的大小;而我们又知道,value 的地址是在所有 key 之后,因此第 i 个 value 的地址还需要加上所有 key 的偏移。
3、赋值操作 m := make(map[int32]int32) m[0] = 6666666
接下来我们将分成几个部分去看看底层在赋值的时候,进行了什么操作:
第一阶段:校验和初始化
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { //判断 hmap 是否已经初始化(是否为 nil) if h == nil { panic(plainError("assignment to entry in nil map")) } //... //判断是否并发读写 map,若是则抛出异常 if h.flags&hashWriting != 0 { throw("concurrent map writes") } //根据 key 的不同类型调用不同的 hash 方法计算得出 hash 值 alg := t.key.alg hash := alg.hash(key, uintptr(h.hash0)) //设置 flags 标志位,表示有一个 goroutine 正在写入数据。因为 alg.hash 有可能出现 panic 导致异常 h.flags |= hashWriting //判断 buckets 是否为 nil,若是则调用 newobject 根据当前 bucket 大小进行分配 //初始化时没有初始 buckets,那么它在第一次赋值时就会对 buckets 分配 if h.buckets == nil { h.buckets = newobject(t.bucket) // newarray(t.bucket, 1) } }
第二阶段:寻找可插入位和更新既有值//根据低八位计算得到 bucket 的内存地址 bucket := hash & bucketMask(h.B) //判断是否正在扩容,若正在扩容中则先迁移再接着处理 if h.growing() { growWork(t, h, bucket) } //计算并得到 bucket 的 bmap 指针地址 b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) //计算 key hash 高八位用于查找 Key top := tophash(hash) var inserti *uint8 var insertk unsafe.Pointer var val unsafe.Pointer for { //迭代 buckets 中的每一个 bucket(共 8 个) for i := uintptr(0); i < bucketCnt; i++ { //对比 bucket.tophash 与 top(高八位)是否一致 if b.tophash[i] != top { //若不一致,判断是否为空槽 if b.tophash[i] == empty && inserti == nil { //有两种情况,第一种是没有插入过。第二种是插入后被删除 inserti = &b.tophash[i] insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) //把该位置标识为可插入 tophash 位置,这里就是第一个可以插入数据的地方 val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) } continue } //若是匹配(也就是原本已经存在),则进行更新。最后跳出并返回 value 的内存地址 k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) if t.indirectkey { k = *((*unsafe.Pointer)(k)) } if !alg.equal(key, k) { continue } // already have a mapping for key. Update it. if t.needkeyupdate { typedmemmove(t.key, k, key) } val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) goto done } //判断是否迭代完毕,若是则结束迭代 buckets 并更新当前桶位置 ovf := b.overflow(t) if ovf == nil { break } b = ovf } //若满足三个条件:触发最大 LoadFactor 、存在过多溢出桶 overflow buckets、没有正在进行扩容。就会进行扩容动作(以确保后续的动作) if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) { hashGrow(t, h) goto again // Growing the table invalidates everything, so try again }
第三阶段:申请新的插入位和插入新值//经过前面迭代寻找动作,若没有找到可插入的位置,意味着当前的所有桶都满了,将重新分配一个新溢出桶用于插入动作。最后再在上一步申请的新插入位置,存储键值对,返回该值的内存地址 if inserti == nil { // all current buckets are full, allocate a new one. newb := h.newoverflow(t, b) inserti = &newb.tophash[0] insertk = add(unsafe.Pointer(newb), dataOffset) val = add(insertk, bucketCnt*uintptr(t.keysize)) }// store new key/value at insert position if t.indirectkey { kmem := newobject(t.key) *(*unsafe.Pointer)(insertk) = kmem insertk = kmem } if t.indirectvalue { vmem := newobject(t.elem) *(*unsafe.Pointer)(val) = vmem } typedmemmove(t.key, insertk, key) *inserti = top h.count++done ... return val
第四阶段:写入
最后返回的是内存地址。是怎么进行写入的呢?这是因为隐藏的最后一步写入动作(将值拷贝到指定内存区域)是通过底层汇编配合来完成的,在 runtime 中只完成了绝大部分的动作。mapassign
函数和拿到值存放的内存地址,再将 6666666 这个值存放进该内存地址中。另外我们看到 PCDATA
指令,主要是包含一些垃圾回收的信息,由编译器产生。...0x0099 00153 (test.go:6) CALL runtime.mapassign_fast32(SB)0x009e 00158 (test.go:6) PCDATA $2, $20x009e 00158 (test.go:6) MOVQ 24(SP), AX0x00a3 00163 (test.go:6) PCDATA $2, $00x00a3 00163 (test.go:6) MOVL $6666666, (AX)
扩容:
关于上文中一直提到的扩容是怎么回事呢,现在我们来具体分析下:还记得bucket中的topHash字段吗?现在我们来补充知识点minTopHash:当一个 cell 的 tophash 值小于 minTopHash 时,标志这个 cell 的迁移状态。因为这个状态值是放在 tophash 数组里,为了和正常的哈希值区分开,会给 key 计算出来的哈希值一个增量:minTopHash。这样就能区分正常的 top hash 值和表示状态的哈希值。下面的这几种状态就表征了 bucket 的情况:// 空的 cell,也是初始时 bucket 的状态empty = 0// 空的 cell,表示 cell 已经被迁移到新的 bucketevacuatedEmpty = 1// key,value 已经搬迁完毕,但是 key 都在新 bucket 前半部分,evacuatedX = 2// 同上,key 在后半部分evacuatedY = 3// tophash 的最小正常值minTopHash = 4
为了避免计算出的topHash与minTopHash 冲突,底层做了相关操作:
func tophash(hash uintptr) uint8 { top := uint8(hash >> (sys.PtrSize*8 - 8)) if top < minTopHash { top += minTopHash } return top}
随着向 map 中添加的 key 越来越多,key 发生碰撞的概率也越来越大。bucket 中的 8 个 cell 会被逐渐塞满,查找、插入、删除 key 的效率也会越来越低。最理想的情况是一个 bucket 只装一个 key,这样,就能达到 O(1)
的效率,但这样空间消耗太大,用空间换时间的代价太高。Go 语言采用一个 bucket 里装载 8 个 key,定位到某个 bucket 后,还需要再定位到具体的 key,这实际上又用了时间换空间。当然,这样做,要有一个度,不然所有的 key 都落在了同一个 bucket 里,直接退化成了链表,各种操作的效率直接降为 O(n),是不行的。因此,需要有一个指标来衡量前面描述的情况,这就是 装载因子
。Go 源码里这样定义: loadFactor := count/(2^B)
count 就是 map 的元素个数,2^B 表示 bucket 数量。再来说触发 map 扩容的时机:在向 map 插入新 key 的时候,会进行条件检测,符合下面这 2 个条件,就会触发扩容:1、装载因子超过阈值,源码里定义的阈值是 6.52、overflow 的 bucket 数量过多通过汇编语言可以找到赋值操作对应源码中的函数是 mapassign
,对应扩容条件的源码如下://触发扩容的时机if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) { hashGrow(t, h) goto again // Growing the table invalidates everything, so try again }// 装载因子超过 6.5func overLoadFactor(count int, B uint8) bool { return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)}// overflow buckets 太多func tooManyOverflowBuckets(noverflow uint16, B uint8) bool { if B > 15 { B = 15 } return noverflow >= uint16(1)<}
第 1 点:我们知道,每个 bucket 有 8 个空位,在没有溢出,且所有的桶都装满了的情况下,装载因子算出来的结果是 8。因此当装载因子超过 6.5 时,表明很多 bucket 都快要装满了,查找效率和插入效率都变低了。在这个时候进行扩容是有必要的。第 2 点:是对第 1 点的补充。就是说在装载因子比较小的情况下,这时候 map 的查找和插入效率也很低,而第 1 点识别不出来这种情况。表面现象就是计算装载因子的分子比较小,即 map 里元素总数少,但是 bucket 数量多(真实分配的 bucket 数量多,包括大量的 overflow bucket)。不难想像造成这种情况的原因:不停地插入、删除元素。先插入很多元素,导致创建了很多 bucket,但是装载因子达不到第 1 点的临界值,未触发扩容来缓解这种情况。之后,删除元素降低元素总数量,再插入很多元素,导致创建很多的 overflow bucket,但就是不会触犯第 1 点的规定,你能拿我怎么办?overflow bucket 数量太多,导致 key 会很分散,查找插入效率低得吓人,因此出台第 2 点规定。这就像是一座空城,房子很多,但是住户很少,都分散了,找起人来很困难。对于命中条件 1,2 的限制,都会发生扩容。但是扩容的策略并不相同,毕竟两种条件应对的场景不同。对于条件 1,元素太多,而 bucket 数量太少,很简单:将 B 加 1,bucket 最大数量(2^B
)直接变成原来 bucket 数量的 2 倍。于是,就有新老 bucket 了。注意,这时候元素都在老 bucket 里,还没迁移到新的 bucket 来。新 bucket 只是最大数量变为原来最大数量的 2 倍(2^B*2
) 。对于条件 2,其实元素没那么多,但是 overflow bucket 数特别多,说明很多 bucket 都没装满。解决办法就是开辟一个新 bucket 空间,将老 bucket 中的元素移动到新 bucket,使得同一个 bucket 中的 key 排列地更紧密。这样,原来,在 overflow bucket 中的 key 可以移动到 bucket 中来。结果是节省空间,提高 bucket 利用率,map 的查找和插入效率自然就会提升。由于 map 扩容需要将原有的 key/value 重新搬迁到新的内存地址,如果有大量的 key/value 需要搬迁,会非常影响性能。因此 Go map 的扩容采取了一种称为“渐进式”的方式,原有的 key 并不会一次性搬迁完毕,每次最多只会搬迁 2 个 bucket。上面说的 hashGrow()
函数实际上并没有真正地“搬迁”,它只是分配好了新的 buckets,并将老的 buckets 挂到了 oldbuckets 字段上。真正搬迁 buckets 的动作在 growWork()
函数中,而调用 growWork()
函数的动作是在 mapassign 和 mapdelete 函数中。也就是插入或修改、删除 key 的时候,都会尝试进行搬迁 buckets 的工作。先检查 oldbuckets 是否搬迁完毕,具体来说就是检查 oldbuckets 是否为 nil。func hashGrow(t *maptype, h *hmap) { // B+1 相当于是原来 2 倍的空间 bigger := uint8(1) // 对应条件 2 if !overLoadFactor(h.count+1, h.B) { // 进行等量的内存扩容,所以 B 不变 bigger = 0 h.flags |= sameSizeGrow } // 将老 buckets 挂到 buckets 上 oldbuckets := h.buckets // 申请新的 buckets 空间 newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil) //先把 h.flags 中 iterator 和 oldIterator 对应位清 0 //如果 iterator 位为 1,把它转接到 oldIterator 位,使得 oldIterator 标志位变成1 //可以理解为buckets 现在挂到了 oldBuckets 名下了,将对应的标志位也转接过去 flags := h.flags &^ (iterator | oldIterator) if h.flags&iterator != 0 { flags |= oldIterator } // commit the grow (atomic wrt gc) h.B += bigger h.flags = flags h.oldbuckets = oldbuckets h.buckets = newbuckets // 搬迁进度为 0 h.nevacuate = 0 // overflow buckets 数为 0 h.noverflow = 0}
几个标志位如下:
// 可能有迭代器使用 bucketsiterator = 1// 可能有迭代器使用 oldbucketsoldIterator = 2// 有协程正在向 map 中写入 keyhashWriting = 4// 等量扩容(对应条件 2)sameSizeGrow = 8
再来看看真正执行搬迁工作的 growWork() 函数
func growWork(t *maptype, h *hmap, bucket uintptr) { // 搬迁正在使用的旧 bucket evacuate(t, h, bucket&h.oldbucketmask()) // 再搬迁一个 bucket,以加快搬迁进程 if h.growing() { evacuate(t, h, h.nevacuate) }}func (h *hmap) growing() bool { return h.oldbuckets != nil}
搬迁过程evacuate源码:
type evacDst struct { b *bmap // 表示bucket 移动的目标地址 i int // 指向 x,y 中 key/val 的 index k unsafe.Pointer // 指向 x,y 中的 key v unsafe.Pointer // 指向 x,y 中的 value}func evacuate(t *maptype, h *hmap, oldbucket uintptr) { // 定位老的 bucket 地址 b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) // 计算容量 结果是 2^B,如 B = 5,结果为32 newbit := h.noldbuckets() // 如果 b 没有被搬迁过 if !evacuated(b) { // 默认是等 size 扩容,前后 bucket 序号不变 var xy [2]evacDst // 使用 x 来进行搬迁 x := &xy[0] x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize))) x.k = add(unsafe.Pointer(x.b), dataOffset) x.v = add(x.k, bucketCnt*uintptr(t.keysize)) // 如果不是等 size 扩容,前后 bucket 序号有变 if !h.sameSizeGrow() { // 使用 y 来进行搬迁 y := &xy[1] // y 代表的 bucket 序号增加了 2^B y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize))) y.k = add(unsafe.Pointer(y.b), dataOffset) y.v = add(y.k, bucketCnt*uintptr(t.keysize)) } // 遍历所有的 bucket,包括 overflow buckets b 是老的 bucket 地址 for ; b != nil; b = b.overflow(t) { k := add(unsafe.Pointer(b), dataOffset) v := add(k, bucketCnt*uintptr(t.keysize)) // 遍历 bucket 中的所有 cell for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) { // 当前 cell 的 top hash 值 top := b.tophash[i] // 如果 cell 为空,即没有 key if top == empty { // 那就标志它被"搬迁"过 b.tophash[i] = evacuatedEmpty continue } // 正常不会出现这种情况 // 未被搬迁的 cell 只可能是 empty 或是 // 正常的 top hash(大于 minTopHash) if top < minTopHash { throw("bad map state") } // 如果 key 是指针,则解引用 k2 := k if t.indirectkey { k2 = *((*unsafe.Pointer)(k2)) } var useY uint8 // 如果不是等量扩容 if !h.sameSizeGrow() { // 计算 hash 值,和 key 第一次写入时一样 hash := t.key.alg.hash(k2, uintptr(h.hash0)) // 如果有协程正在遍历 map 如果出现 相同的 key 值,算出来的 hash 值不同 if h.flags&iterator != 0 && !t.reflexivekey && !t.key.alg.equal(k2, k2) { // useY =1 使用位置Y useY = top & 1 top = tophash(hash) } else { // 第 B 位置 不是 0 if hash&newbit != 0 { //使用位置Y useY = 1 } } } if evacuatedX+1 != evacuatedY { throw("bad evacuatedN") } //决定key是裂变到 X 还是 Y b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY dst := &xy[useY] // evacuation destination // 如果 xi 等于 8,说明要溢出了 if dst.i == bucketCnt { // 新建一个 bucket dst.b = h.newoverflow(t, dst.b) // xi 从 0 开始计数 dst.i = 0 //key移动的位置 dst.k = add(unsafe.Pointer(dst.b), dataOffset) //value 移动的位置 dst.v = add(dst.k, bucketCnt*uintptr(t.keysize)) } // 设置 top hash 值 dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check // key 是指针 if t.indirectkey { // 将原 key(是指针)复制到新位置 *(*unsafe.Pointer)(dst.k) = k2 // copy pointer } else { // 将原 key(是值)复制到新位置 typedmemmove(t.key, dst.k, k) // copy value } //value同上 if t.indirectvalue { *(*unsafe.Pointer)(dst.v) = *(*unsafe.Pointer)(v) } else { typedmemmove(t.elem, dst.v, v) } // 定位到下一个 cell dst.i++ dst.k = add(dst.k, uintptr(t.keysize)) dst.v = add(dst.v, uintptr(t.valuesize)) } } // Unlink the overflow buckets & clear key/value to help GC. // bucket搬迁完毕 如果没有协程在使用老的 buckets,就把老 buckets 清除掉,帮助gc if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 { b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)) ptr := add(b, dataOffset) n := uintptr(t.bucketsize) - dataOffset memclrHasPointers(ptr, n) } } // 更新搬迁进度 if oldbucket == h.nevacuate { advanceEvacuationMark(h, t, newbit) }}
扩容后,B 增加了 1,意味着 buckets 总数是原来的 2 倍,原来 1 号的桶“裂变”到两个桶,某个 key 在搬迁前后 bucket 序号可能和原来相等,也可能是相比原来加上 2^B(原来的 B 值),取决于 hash 值 第 6 bit 位是 0 还是 1。原理看下图:
4、遍历操作:1.只获取key for key := range m { fmt.Println(key) }2.只获取value for _, value := range m { fmt.Println(value) }3.有序遍历map,获取kv keys := []string{} for k, _ := range m { keys = append(keys, k) } // 排序 sort.Strings(keys) // 有序遍历 for _, k := range keys { fmt.Println(k, m[k]) }
理解了上面 bucket 序号的变化,我们就可以回答另一个问题了:为什么遍历 map 是无序的?遍历的过程,就是按顺序遍历 bucket,同时按顺序遍历 bucket 中的 key。搬迁后,key 的位置发生了重大的变化,有些 key 飞上高枝,有些 key 则原地不动。这样,遍历 map 的结果就不可能按原来的顺序了。当然,如果我就一个 hard code 的 map,我也不会向 map 进行插入删除的操作,按理说每次遍历这样的 map 都会返回一个固定顺序的 key/value 序列吧。的确是这样,但是 Go 杜绝了这种做法,因为这样会给新手程序员带来误解,以为这是一定会发生的事情,在某些情况下,可能会酿成大错。当然,Go 做得更绝,当我们在遍历 map 时,并不是固定地从 0 号 bucket 开始遍历,每次都是从一个随机值序号的 bucket 开始遍历,并且是从这个 bucket 的一个随机序号的 cell 开始遍历。这样,即使你是一个写死的 map,仅仅只是遍历它,也不太可能会返回一个固定序列的 key/value 对了。//runtime.mapiterinit 遍历时选用初始桶的函数func mapiterinit(t *maptype, h *hmap, it *hiter) { ... it.t = t it.h = h it.B = h.B it.buckets = h.buckets if t.bucket.kind&kindNoPointers != 0 { h.createOverflow() it.overflow = h.extra.overflow it.oldoverflow = h.extra.oldoverflow } r := uintptr(fastrand()) if h.B > 31-bucketCntBits { r += uintptr(fastrand()) << 31 } it.startBucket = r & bucketMask(h.B) it.offset = uint8(r >> h.B & (bucketCnt - 1)) it.bucket = it.startBucket ... mapiternext(it)}
fastrandfor range map
...// decide where to startr := uintptr(fastrand())if h.B > 31-bucketCntBits { r += uintptr(fastrand()) << 31}it.startBucket = r & bucketMask(h.B)it.offset = uint8(r >> h.B & (bucketCnt - 1))// iterator stateit.bucket = it.startBucket
5、更新操作:
底层操作原理参考上文
m["age"] = "two"m["name"] = "lily"
6、删除操作:delete(m, "name")
写操作底层的执行函数是 mapdelete
:*func mapdelete(t *maptype, h hmap, key unsafe.Pointer)它首先会检查 h.flags 标志,如果发现写标位是 1,直接 panic,因为这表明有其他协程同时在进行写操作。计算 key 的哈希,找到落入的 bucket。检查此 map 如果正在扩容的过程中,直接触发一次搬迁操作。删除操作同样是两层循环,核心还是找到 key 的具体位置。寻找过程都是类似的,在 bucket 中挨个 cell 寻找。找到对应位置后,对 key 或者 value 进行“清零”操作,将 count 值减 1,将对应位置的 tophash 值置成 Empty
。func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) { if raceenabled && h != nil { callerpc := getcallerpc() pc := funcPC(mapdelete) racewritepc(unsafe.Pointer(h), callerpc, pc) raceReadObjectPC(t.key, key, callerpc, pc) } if msanenabled && h != nil { msanread(key, t.key.size) } if h == nil || h.count == 0 { return } if h.flags&hashWriting != 0 { throw("concurrent map writes") } alg := t.key.alg hash := alg.hash(key, uintptr(h.hash0)) // Set hashWriting after calling alg.hash, since alg.hash may panic, // in which case we have not actually done a write (delete). h.flags |= hashWriting bucket := hash & bucketMask(h.B) if h.growing() { growWork(t, h, bucket) } b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize))) top := tophash(hash)search: for ; b != nil; b = b.overflow(t) { for i := uintptr(0); i < bucketCnt; i++ { if b.tophash[i] != top { continue } k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) k2 := k if t.indirectkey { k2 = *((*unsafe.Pointer)(k2)) } if !alg.equal(key, k2) { continue } // Only clear key if there are pointers in it. // 对key清零 if t.indirectkey { *(*unsafe.Pointer)(k) = nil } else if t.key.kind&kindNoPointers == 0 { memclrHasPointers(k, t.key.size) } v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) // 对value清零 if t.indirectvalue { *(*unsafe.Pointer)(v) = nil } else if t.elem.kind&kindNoPointers == 0 { memclrHasPointers(v, t.elem.size) } else { memclrNoHeapPointers(v, t.elem.size) } // 高位hash清零 b.tophash[i] = empty // 个数减一 h.count-- break search } } if h.flags&hashWriting == 0 { throw("concurrent map writes") } h.flags &^= hashWriting}
7、并发操作
map 并不是一个线程安全的数据结构。同时读写一个 map 是不安全的,如果被检测到,会直接 panic。解决方法1:读写锁sync.RWMutex。
type TestMap struct { M map[int]string Lock sync.RWMutex}func main() { testMap := TestMap{} testMap.M = map[int]string{1: "lili"} go func() { i := 0 for i < 10000 { testMap.Lock.RLock() fmt.Println(i, testMap.M[1]) testMap.Lock.RUnlock() i++ } }() go func() { i := 0 for i < 10000 { testMap.Lock.Lock() testMap.M[1] = "lily" testMap.Lock.Unlock() i++ } }() for { runtime.GC() }}
解决方法2:使用golang提供的 sync.Mapfunc main() { m := sync.Map{} m.Store(1, 1) i := 0 go func() { for i < 1000 { m.Store(1, 1) i++ } }() go func() { for i < 1000 { m.Store(2, 2) i++ } }() go func() { for i < 1000 { fmt.Println(m.Load(1)) i++ } }() for { runtime.GC() }}
参考文献:【1】《深度解密Go语言之map》
【2】《解剖Go语言map底层实现》
【3】《深入理解 Go map:赋值和扩容迁移》
Golang源码系列会有持续性的文章发布,后续会在本公众号陆续推出,感兴趣的伙伴们敬请期待呦!