binary包实现了数字和字节序列之间的简单转换。

1、ByteOrder

ByteOrder指定了如何将一个字节序列转换为16、32或64位的无符号整数:

type ByteOrder interface {
	Uint16([]byte) uint16
	Uint32([]byte) uint32
	Uint64([]byte) uint64
	PutUint16([]byte, uint16)
	PutUint32([]byte, uint32)
	PutUint64([]byte, uint64)
	String() string
}

ByteOrder是一个接口,在binary中有两个实现了该接口的结构体,分别是littleEndian和bigEndian,也就是小端和大端。大端小端指的是数据如何存储在内存中,比如:将低位字节存储在低地址空间中、高位字节存储在高地址空间中就是小端字节序;相反,将低位字节存储在高地址空间中、高位字节存储在低地址空间中就是大端字节序。

例如:十六进制数0X12345678以小端和大端字节序分别在内存中的存储方式如下:

littleEndian:

littleEndian在其它包中是无法创建的,但是在binary中已经创建了一个名为LittleEndian的该结构体,我们可以直接使用。

var LittleEndian littleEndian

type littleEndian struct{}

func (littleEndian) Uint16(b []byte) uint16 {
	_ = b[1] // 编译器的边界检测提示
	return uint16(b[0]) | uint16(b[1])<<8
}

func (littleEndian) PutUint16(b []byte, v uint16) {
	_ = b[1] // early bounds check to guarantee safety of writes below
	b[0] = byte(v)
	b[1] = byte(v >> 8)
}

func (littleEndian) Uint32(b []byte) uint32 {
	_ = b[3] // bounds check hint to compiler; see golang.org/issue/14808
	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}

func (littleEndian) PutUint32(b []byte, v uint32) {
	_ = b[3] // early bounds check to guarantee safety of writes below
	b[0] = byte(v)
	b[1] = byte(v >> 8)
	b[2] = byte(v >> 16)
	b[3] = byte(v >> 24)
}

func (littleEndian) Uint64(b []byte) uint64 {
	_ = b[7] // bounds check hint to compiler; see golang.org/issue/14808
	return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
		uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}

func (littleEndian) PutUint64(b []byte, v uint64) {
	_ = b[7] // early bounds check to guarantee safety of writes below
	b[0] = byte(v)
	b[1] = byte(v >> 8)
	b[2] = byte(v >> 16)
	b[3] = byte(v >> 24)
	b[4] = byte(v >> 32)
	b[5] = byte(v >> 40)
	b[6] = byte(v >> 48)
	b[7] = byte(v >> 56)
}

func (littleEndian) String() string { return "LittleEndian" }

func (littleEndian) GoString() string { return "binary.LittleEndian" }

在上面定义的方法也比较简单,就是字节序列与无符号数之间的转换。例如Uint16这个方法,在这里是小端字节序,因此低字节存储在低地址空间中,随着切片的索引的增大,地址空间也是增大的,所以b[1]所在空间是高地址,因此将b[1]左移八位后与b[0]位与就可以得到uint16类型的数据了。

bigEndian:

大端与小端相反:

var BigEndian bigEndian

type bigEndian struct{}

func (bigEndian) Uint16(b []byte) uint16 {
	_ = b[1] // bounds check hint to compiler; see golang.org/issue/14808
	return uint16(b[1]) | uint16(b[0])<<8
}

func (bigEndian) PutUint16(b []byte, v uint16) {
	_ = b[1] // early bounds check to guarantee safety of writes below
	b[0] = byte(v >> 8)
	b[1] = byte(v)
}

func (bigEndian) Uint32(b []byte) uint32 {
	_ = b[3] // bounds check hint to compiler; see golang.org/issue/14808
	return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
}

func (bigEndian) PutUint32(b []byte, v uint32) {
	_ = b[3] // early bounds check to guarantee safety of writes below
	b[0] = byte(v >> 24)
	b[1] = byte(v >> 16)
	b[2] = byte(v >> 8)
	b[3] = byte(v)
}

func (bigEndian) Uint64(b []byte) uint64 {
	_ = b[7] // bounds check hint to compiler; see golang.org/issue/14808
	return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
		uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
}

func (bigEndian) PutUint64(b []byte, v uint64) {
	_ = b[7] // early bounds check to guarantee safety of writes below
	b[0] = byte(v >> 56)
	b[1] = byte(v >> 48)
	b[2] = byte(v >> 40)
	b[3] = byte(v >> 32)
	b[4] = byte(v >> 24)
	b[5] = byte(v >> 16)
	b[6] = byte(v >> 8)
	b[7] = byte(v)
}

func (bigEndian) String() string { return "BigEndian" }

func (bigEndian) GoString() string { return "binary.BigEndian" }

 

2、binary.Read

Read方法从一个reader中读取数据到data中,data必须是一个指针或一个固定大小的值或切片:

该方法也可以将reader中读取的数据赋值给结构体的各个字段中。

func Read(r io.Reader, order ByteOrder, data interface{}) error {
	// Fast path for basic types and slices.
	if n := intDataSize(data); n != 0 {
		bs := make([]byte, n)
		if _, err := io.ReadFull(r, bs); err != nil {
			return err
		}
		switch data := data.(type) {
		case *bool:
			*data = bs[0] != 0
		case *int8:
			*data = int8(bs[0])
		case *uint8:
			*data = bs[0]
		case *int16:
			*data = int16(order.Uint16(bs))
		case *uint16:
			*data = order.Uint16(bs)
		case *int32:
			*data = int32(order.Uint32(bs))
		case *uint32:
			*data = order.Uint32(bs)
		case *int64:
			*data = int64(order.Uint64(bs))
		case *uint64:
			*data = order.Uint64(bs)
		case *float32:
			*data = math.Float32frombits(order.Uint32(bs))
		case *float64:
			*data = math.Float64frombits(order.Uint64(bs))
		case []bool:
			for i, x := range bs { // Easier to loop over the input for 8-bit values.
				data[i] = x != 0
			}
		case []int8:
			for i, x := range bs {
				data[i] = int8(x)
			}
		case []uint8:
			copy(data, bs)
		case []int16:
			for i := range data {
				data[i] = int16(order.Uint16(bs[2*i:]))
			}
		case []uint16:
			for i := range data {
				data[i] = order.Uint16(bs[2*i:])
			}
		case []int32:
			for i := range data {
				data[i] = int32(order.Uint32(bs[4*i:]))
			}
		case []uint32:
			for i := range data {
				data[i] = order.Uint32(bs[4*i:])
			}
		case []int64:
			for i := range data {
				data[i] = int64(order.Uint64(bs[8*i:]))
			}
		case []uint64:
			for i := range data {
				data[i] = order.Uint64(bs[8*i:])
			}
		case []float32:
			for i := range data {
				data[i] = math.Float32frombits(order.Uint32(bs[4*i:]))
			}
		case []float64:
			for i := range data {
				data[i] = math.Float64frombits(order.Uint64(bs[8*i:]))
			}
		default:
			n = 0 // fast path doesn't apply
		}
		if n != 0 {
			return nil
		}
	}

	// Fallback to reflect-based decoding.
	v := reflect.ValueOf(data)
	size := -1
	switch v.Kind() {
	case reflect.Ptr:
		v = v.Elem()
		size = dataSize(v)
	case reflect.Slice:
		size = dataSize(v)
	}
	if size < 0 {
		return errors.New("binary.Read: invalid type " + reflect.TypeOf(data).String())
	}
	d := &decoder{order: order, buf: make([]byte, size)}
	if _, err := io.ReadFull(r, d.buf); err != nil {
		return err
	}
	d.value(v)
	return nil
}

 

3、binary.Write

Write方法将数据的二进制写入一个Writer中,data必须为一个固定值的值或者切片或指向该类数据的一个指针:

func Write(w io.Writer, order ByteOrder, data interface{}) error {
	// Fast path for basic types and slices.
	if n := intDataSize(data); n != 0 {
		bs := make([]byte, n)
		switch v := data.(type) {
		case *bool:
			if *v {
				bs[0] = 1
			} else {
				bs[0] = 0
			}
		case bool:
			if v {
				bs[0] = 1
			} else {
				bs[0] = 0
			}
		case []bool:
			for i, x := range v {
				if x {
					bs[i] = 1
				} else {
					bs[i] = 0
				}
			}
		case *int8:
			bs[0] = byte(*v)
		case int8:
			bs[0] = byte(v)
		case []int8:
			for i, x := range v {
				bs[i] = byte(x)
			}
		case *uint8:
			bs[0] = *v
		case uint8:
			bs[0] = v
		case []uint8:
			bs = v
		case *int16:
			order.PutUint16(bs, uint16(*v))
		case int16:
			order.PutUint16(bs, uint16(v))
		case []int16:
			for i, x := range v {
				order.PutUint16(bs[2*i:], uint16(x))
			}
		case *uint16:
			order.PutUint16(bs, *v)
		case uint16:
			order.PutUint16(bs, v)
		case []uint16:
			for i, x := range v {
				order.PutUint16(bs[2*i:], x)
			}
		case *int32:
			order.PutUint32(bs, uint32(*v))
		case int32:
			order.PutUint32(bs, uint32(v))
		case []int32:
			for i, x := range v {
				order.PutUint32(bs[4*i:], uint32(x))
			}
		case *uint32:
			order.PutUint32(bs, *v)
		case uint32:
			order.PutUint32(bs, v)
		case []uint32:
			for i, x := range v {
				order.PutUint32(bs[4*i:], x)
			}
		case *int64:
			order.PutUint64(bs, uint64(*v))
		case int64:
			order.PutUint64(bs, uint64(v))
		case []int64:
			for i, x := range v {
				order.PutUint64(bs[8*i:], uint64(x))
			}
		case *uint64:
			order.PutUint64(bs, *v)
		case uint64:
			order.PutUint64(bs, v)
		case []uint64:
			for i, x := range v {
				order.PutUint64(bs[8*i:], x)
			}
		case *float32:
			order.PutUint32(bs, math.Float32bits(*v))
		case float32:
			order.PutUint32(bs, math.Float32bits(v))
		case []float32:
			for i, x := range v {
				order.PutUint32(bs[4*i:], math.Float32bits(x))
			}
		case *float64:
			order.PutUint64(bs, math.Float64bits(*v))
		case float64:
			order.PutUint64(bs, math.Float64bits(v))
		case []float64:
			for i, x := range v {
				order.PutUint64(bs[8*i:], math.Float64bits(x))
			}
		}
		_, err := w.Write(bs)
		return err
	}

	// Fallback to reflect-based encoding.
	v := reflect.Indirect(reflect.ValueOf(data))
	size := dataSize(v)
	if size < 0 {
		return errors.New("binary.Write: invalid type " + reflect.TypeOf(data).String())
	}
	buf := make([]byte, size)
	e := &encoder{order: order, buf: buf}
	e.value(v)
	_, err := w.Write(buf)
	return err
}

 

4、binary.Read和binary.Write的应用

当我们使用tcp传输数据时,常常会遇到粘包的现象,因此为了解决粘包我们需要告诉对方我们发送的数据包的大小。一般是使用TLV类型的数据协议,分别是Type、Len、Value,Type和Len为数据头,可以将这个两个字段都固定为四个字节。读取数据时,先将Type和Len读取出来,然后再根据Len来读取剩余的数据:

例如我们使用客户端向一个服务端发送数据:

client:

package main

import (
	"bytes"
	"encoding/binary"
	"fmt"
	"net"
)

// 对数据进行编码
func Encode(id uint32, msg []byte) []byte {
	var dataLen uint32 = uint32(len(msg))

	// *Buffer实现了Writer
	buffer := bytes.NewBuffer([]byte{})
    // 将id写入字节切片
	if err := binary.Write(buffer, binary.LittleEndian, &id); err != nil {
		fmt.Println("Write to buffer error:", err)
	}
	// 将数据长度写入字节切片
	if err := binary.Write(buffer, binary.LittleEndian, &dataLen); err != nil {
		fmt.Println("Write to buffer error:", err)
	}
	
    // 最后将数据添加到后面
	msg = append(buffer.Bytes(), msg...)

	return msg
}

func main() {
	dial, err := net.Dial("tcp4", "127.0.0.1:6666")
	if err != nil {
		fmt.Println("Dial tcp error:", err)
	}
	
    // 向服务端发送hello,world!
	msg := []byte("hello,world!")
	var id uint32 = 1

	data := Encode(id, msg)
	dial.Write(data)

	dial.Close()
}

// 运行结果:
Receive Data, Type:1, Len:12, Message:hello,world!
Connection has been closed by client

server:

package main

import (
	"bytes"
	"encoding/binary"
	"fmt"
	"io"
	"net"
)

// 解码,从字节切片中获取id和len
func Decode(encoded []byte) (id uint32, l uint32) {
	buffer := bytes.NewBuffer(encoded)
	if err := binary.Read(buffer, binary.LittleEndian, &id); err != nil {
		fmt.Println("Read from buffer error:", err)
	}

	if err := binary.Read(buffer, binary.LittleEndian, &l); err != nil {
		fmt.Println("Read from buffer error:", err)
	}

	return id, l
}

const MAX_PACKAGE = 4096

func DealConn(conn net.Conn) {
	defer conn.Close()

	head := make([]byte, 8)
	for {
        // 先读取8个字节的头部,也就是id和dataLen
		_, err := io.ReadFull(conn, head)
		if err != nil {
			if err == io.EOF {
				fmt.Println("Connection has been closed by client")
			} else {
				fmt.Println("Read error:", err)
			}
			return
		}

		id, l := Decode(head)
		if l > MAX_PACKAGE {
			fmt.Println("Received data grater than MAX_PACKAGE")
			return
		}
		
        // 然后读取剩余数据
		data := make([]byte, l)
		_, err = io.ReadFull(conn, data)
		if err != nil {
			if err == io.EOF {
				fmt.Println("Connection has been closed by client")
			} else {
				fmt.Println("Read error:", err)
			}
			return
		}

        // 打印收到的数据
		fmt.Printf("Receive Data, Type:%d, Len:%d, Message:%s\n",
			id, l, string(data))
	}

}

func main() {

	listener, err := net.Listen("tcp", "127.0.0.1:6666")
	if err != nil {
		fmt.Println("Listen tcp error:", err)
		return
	}


	for {
		conn, err := listener.Accept()
		if err != nil {
			fmt.Println("Accept error:", err)
            break
		}

		// 启动一个协程处理客户端
		go DealConn(conn)

	}

}
运行结果:
Receive Data, Type:1, Len:12, Message:hello,world!
Connection has been closed by client