GPS模块的数据格式
对GPS模块的数据处理本质上还是串口通信程序设计,只是GPS模块的输出遵循固定的格式,通过字符串检索查找即可从模块发送的数据中找出需要的数据,常用的GPS模块大多采用NMEA-0183 协议。NMEA-0183 是美国国家海洋电子协会(National Marine Electronics Association)所指定的标准规格,这一标准制订所有航海电子仪器间的通讯标准,其中包含传输资料的格式以及传输资料的通讯协议。
以下是一组正常的GPS 数据
$GPGGA,082006.000,3852.9276,N,11527.4283,E,1,08,1.0,20.6,M,,,,0000*35
$GPRMC,082006.000,A,3852.9276,N,11527.4283,E,0.00,0.0,261009,,*38
$GPVTG,0.0,T,,M,0.00,N,0.0,K*50
下面分别对每组数据的含义进行分析。
GPS 固定数据输出语句($GPGGA),这是一帧GPS 定位的主要数据,也是使用最广的数据。为了便于理解,下面举例说明$GPGGA语句各部分的含义。
例:$GPGGA,082006.000,3852.9276,N,11527.4283,E,1,08,1.0,20.6,M,,,,0000*35
其标准格式为:
$GPGGA,(1),(2),(3),(4),(5),(6),(7),(8),(9),M,(10),M,(11),(12)*hh(CR)(LF)
各部分所对应的含义为:
(2) 纬度(格式ddmm.mmmm:即dd 度,mm.mmmm 分);
(3) N/S(北纬或南纬):北纬38 度52.9276 分;
(4) 经度(格式dddmm.mmmm:即ddd 度,mm.mmmm 分);
(5) E/W(东经或西经):东经115 度27.4283 分;
(6) 质量因子(0=没有定位,1=实时GPS,2=差分GPS):1=实时GPS;
(7) 可使用的卫星数(0~8):可使用的卫星数=08;
(8) 水平精度因子(1.0~99.9);水平精度因子=1.0;
(9) 天线高程(海平面,-9999.9~99999.9,单位:m);天线高程=20.6m);
(10) 大地椭球面相对海平面的高度(-999.9~9999.9,单位:m):无;
(11) 差分GPS 数据年龄,实时GPS 时无:无;
(12) 差分基准站号(0000~1023),实时GPS 时无:无;
*总和校验域;hh 总和校验数:35(CR)(LF)回车,换行。
GPRMC(建议使用最小GPS 数据格式)
$GPRMC,082006.000,A,3852.9276,N,11527.4283,E,0.00,0.0,261009,,*38
$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>
(1) 标准定位时间(UTC time)格式:时时分分秒秒.秒秒秒(hhmmss.sss)。
(2) 定位状态,A = 数据可用,V = 数据不可用。
(3) 纬度,格式:度度分分.分分分分(ddmm.mmmm)。
(4) 纬度区分,北半球(N)或南半球(S)。
(5) 经度,格式:度度分分.分分分分。
(6) 经度区分,东(E)半球或西(W)半球。
(7) 相对位移速度, 0.0 至1851.8 knots
(8) 相对位移方向,000.0 至359.9 度。实际值。
(9) 日期,格式:日日月月年年(ddmmyy)。
(10) 磁极变量,000.0 至180.0。
(11) 度数。
(12) Checksum.(检查位)
$GPVTG 地面速度信息
例:$GPVTG,0.0,T,,M,0.00,N,0.0,K*50
字段0:$GPVTG,语句ID,表明该语句为Track Made Good and Ground Speed(VTG)地
面速度信息
字段1:运动角度,000 - 359,(前导位数不足则补0)
字段2:T=真北参照系
字段3:运动角度,000 - 359,(前导位数不足则补0)
字段4:M=磁北参照系
字段5:水平运动速度(0.00)(前导位数不足则补0)
字段6:N=节,Knots
字段7:水平运动速度(0.00)(前导位数不足则补0)
字段8:K=公里/时,km/h
字段9:校验值
GPS模块的驱动安装
GPS模块的应用程序设计
实现读取并解析GPS信息的代码如下:
package model
import (
//"fmt"
//"infrastructure/log"
//"io"
"math"
"strconv"
"strings"
"time"
"infrastructure/github.com/serial"
)
type GpsInfo struct {
Longitude string
Latitude string
LonDirection string
LatDirection string
LongitudeRadian float64
LatitudeRadian float64
IsGpsNormal bool
}
type ComObject struct {
ComName string
Baudrate int
//Com io.ReadWriteCloser
Com *serial.SerialPort
IsComNormal bool
CloseChan chan bool
}
var (
ComName = "COM3"
ComObj = &ComObject{ComName: ComName, Baudrate: 4800, IsComNormal: false, CloseChan: make(chan bool, 1)}
GpsObj = &GpsInfo{IsGpsNormal: false}
BsGpsObj = &GpsInfo{IsGpsNormal: true, LonDirection: "E", LongitudeRadian: 116.63, LatDirection: "N", LatitudeRadian: 40.32}
UeBsDistance float64 = 0
directionMap = map[string]string{
"N": "北纬",
"S": "南纬",
"E": "东经",
"W": "西经",
}
)
func StartGpsModule() {
ComObj.ComName = ComName
if true == ComObj.GetPortName() {
ComName = ComObj.ComName
}
for {
if true == ComObj.IsComNormal {
ComObj.IsComNormal = false
GpsObj.IsGpsNormal = false
continue
}
time.Sleep(time.Second * 5)
if false == ComObj.GetPortName() {
continue
}
err := ComObj.OpenCom()
if nil != err {
GpsObj.IsGpsNormal = false
continue
} else {
ComObj.IsComNormal = true
}
go ComObj.ReceiveFromCom()
}
}
func (this *ComObject) GetPortName() bool {
ports, err := serial.GetPortsList()
if nil != err || 0 == len(ports) {
return false
}
this.ComName = ports[0]
return true
//for _, port := range ports {
//fmt.Printf("Found port: %v\n", port)
//}
}
func (this *ComObject) OpenCom() (err error) {
mode := &serial.Mode{
BaudRate: 4800,
DataBits: 8,
Parity: serial.PARITY_NONE,
StopBits: serial.STOPBITS_ONE,
}
s, err := serial.OpenPort(this.ComName, mode)
if nil != err {
//log.Error("pkg: model, func: OpenCom, method: goserial.OpenPort, errInfo:", err)
return
}
this.Com = s
return nil
}
func (this *ComObject) Close() {
this.Com.Close()
this.CloseChan
}
func (this *ComObject) ReceiveFromCom() {
defer this.Close()
buf := make([]byte, 512)
for {
time.Sleep(time.Second)
n, err := this.Com.Read(buf[0:])
if nil != err {
//log.Error("pkg: model, func: ReceiveFromCom, method: this.Com.Read, errInfo:", err)
return
}
parseGpsInfo(string(buf[:n]))
//fmt.Println("parseRst:", GpsObj)
}
}
func parseGpsInfo(gpsInfo string) {
var parseSuccessfulFlag bool = false
strLineSlice := strings.Split(gpsInfo, "\n")
if 0 == len(strLineSlice) {
GpsObj.IsGpsNormal = false
return
}
for _, oneLine := range strLineSlice {
if 0 == len(oneLine) {
continue
}
if '$' != oneLine[0] {
continue
}
if !strings.Contains(oneLine, "*") {
continue
}
if !strings.Contains(oneLine, "N") && !strings.Contains(oneLine, "S") {
continue
}
if !strings.Contains(oneLine, "E") && !strings.Contains(oneLine, "W") {
continue
}
if strings.Contains(oneLine, "GPGGA") {
if false == parseLongitudeAndLatitudeFromGpgga(oneLine) {
continue
}
parseSuccessfulFlag = true
break
}
if strings.Contains(oneLine, "GPRMC") {
if false == parseLongitudeAndLatitudeFromGprmc(oneLine) {
continue
}
parseSuccessfulFlag = true
break
}
}
if true == parseSuccessfulFlag {
GpsObj.IsGpsNormal = true
UeBsDistance = CalcDistByLongitudeLantitude(*GpsObj, *BsGpsObj)
} else {
GpsObj.IsGpsNormal = false
UeBsDistance = 0
}
}
func parseLongitudeAndLatitudeFromGpgga(gpggaInfo string) bool {
strSlice := strings.Split(gpggaInfo, ",")
if 3 > len(strSlice[2]) || 4 > len(strSlice[4]) {
return false
}
GpsObj.LatDirection = strSlice[3]
GpsObj.LonDirection = strSlice[5]
GpsObj.Latitude = directionMap[strSlice[3]] + strSlice[2][:2] + "度" + strSlice[2][2:] + "分"
GpsObj.Longitude = directionMap[strSlice[5]] + strSlice[4][:3] + "度" + strSlice[4][3:] + "分"
tmpIntPartLat, _ := strconv.ParseFloat(strSlice[2][:2], 32)
tmpDecimalPartLat, _ := strconv.ParseFloat(strSlice[2][2:], 32)
GpsObj.LatitudeRadian = tmpIntPartLat + tmpDecimalPartLat/60
tmpIntPartLon, _ := strconv.ParseFloat(strSlice[4][:3], 32)
tmpDecimalPartLon, _ := strconv.ParseFloat(strSlice[4][3:], 32)
GpsObj.LongitudeRadian = tmpIntPartLon + tmpDecimalPartLon/60
return true
}
func parseLongitudeAndLatitudeFromGprmc(gprmcInfo string) bool {
strSlice := strings.Split(gprmcInfo, ",")
if 3 > len(strSlice[3]) || 4 > len(strSlice[5]) {
return false
}
GpsObj.LatDirection = strSlice[4]
GpsObj.LonDirection = strSlice[6]
GpsObj.Latitude = directionMap[strSlice[4]] + strSlice[3][:2] + "度" + strSlice[3][2:] + "分"
GpsObj.Longitude = directionMap[strSlice[6]] + strSlice[5][:3] + "度" + strSlice[5][3:] + "分"
tmpIntPartLat, _ := strconv.ParseFloat(strSlice[3][:2], 32)
tmpDecimalPartLat, _ := strconv.ParseFloat(strSlice[3][2:], 32)
GpsObj.LatitudeRadian = tmpIntPartLat + tmpDecimalPartLat/60
tmpIntPartLon, _ := strconv.ParseFloat(strSlice[5][:3], 32)
tmpDecimalPartLon, _ := strconv.ParseFloat(strSlice[5][3:], 32)
GpsObj.LongitudeRadian = tmpIntPartLon + tmpDecimalPartLon/60
return true
}
func CalcDistByLongitudeLantitude(gpsPointA, gpsPointB GpsInfo) (distance float64) {
if false == gpsPointA.IsGpsNormal || false == gpsPointB.IsGpsNormal {
return 0
}
lonA, latA := getFormatedLongitudeLantitude(gpsPointA)
lonB, latB := getFormatedLongitudeLantitude(gpsPointB)
c := math.Sin(latA*math.Pi/180)*math.Sin(latB*math.Pi/180)*math.Cos((lonA-lonB)*math.Pi/180) + math.Cos(latA*math.Pi/180)*math.Cos(latB*math.Pi/180)
distance = 6371004 * math.Acos(c)
return
}
func getFormatedLongitudeLantitude(gpsPoint GpsInfo) (lon, lat float64) {
if "E" == gpsPoint.LonDirection {
lon = gpsPoint.LongitudeRadian
} else {
lon = 0 - gpsPoint.LongitudeRadian
}
if "N" == gpsPoint.LatDirection {
lat = 90 - gpsPoint.LatitudeRadian
} else {
lat = 90 + gpsPoint.LatitudeRadian
}
return
}