GPS模块的数据格式

对GPS模块的数据处理本质上还是串口通信程序设计,只是GPS模块的输出遵循固定的格式,通过字符串检索查找即可从模块发送的数据中找出需要的数据,常用的GPS模块大多采用NMEA-0183 协议。NMEA-0183 是美国国家海洋电子协会(National Marine Electronics Association)所指定的标准规格,这一标准制订所有航海电子仪器间的通讯标准,其中包含传输资料的格式以及传输资料的通讯协议。

以下是一组正常的GPS 数据

$GPGGA,082006.000,3852.9276,N,11527.4283,E,1,08,1.0,20.6,M,,,,0000*35

$GPRMC,082006.000,A,3852.9276,N,11527.4283,E,0.00,0.0,261009,,*38

$GPVTG,0.0,T,,M,0.00,N,0.0,K*50

下面分别对每组数据的含义进行分析。

GPS 固定数据输出语句($GPGGA),这是一帧GPS 定位的主要数据,也是使用最广的数据。为了便于理解,下面举例说明$GPGGA语句各部分的含义。

例:$GPGGA,082006.000,3852.9276,N,11527.4283,E,1,08,1.0,20.6,M,,,,0000*35

其标准格式为:

$GPGGA,(1),(2),(3),(4),(5),(6),(7),(8),(9),M,(10),M,(11),(12)*hh(CR)(LF)

各部分所对应的含义为:

(2) 纬度(格式ddmm.mmmm:即dd 度,mm.mmmm 分);

(3) N/S(北纬或南纬):北纬38 度52.9276 分;

(4) 经度(格式dddmm.mmmm:即ddd 度,mm.mmmm 分);

(5) E/W(东经或西经):东经115 度27.4283 分;

(6) 质量因子(0=没有定位,1=实时GPS,2=差分GPS):1=实时GPS;

(7) 可使用的卫星数(0~8):可使用的卫星数=08;

(8) 水平精度因子(1.0~99.9);水平精度因子=1.0;

(9) 天线高程(海平面,-9999.9~99999.9,单位:m);天线高程=20.6m);

(10) 大地椭球面相对海平面的高度(-999.9~9999.9,单位:m):无;

(11) 差分GPS 数据年龄,实时GPS 时无:无;

(12) 差分基准站号(0000~1023),实时GPS 时无:无;

*总和校验域;hh 总和校验数:35(CR)(LF)回车,换行。

GPRMC(建议使用最小GPS 数据格式)

$GPRMC,082006.000,A,3852.9276,N,11527.4283,E,0.00,0.0,261009,,*38

$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>

(1) 标准定位时间(UTC time)格式:时时分分秒秒.秒秒秒(hhmmss.sss)。

(2) 定位状态,A = 数据可用,V = 数据不可用。

(3) 纬度,格式:度度分分.分分分分(ddmm.mmmm)。

(4) 纬度区分,北半球(N)或南半球(S)。

(5) 经度,格式:度度分分.分分分分。

(6) 经度区分,东(E)半球或西(W)半球。

(7) 相对位移速度, 0.0 至1851.8 knots

(8) 相对位移方向,000.0 至359.9 度。实际值。

(9) 日期,格式:日日月月年年(ddmmyy)。

(10) 磁极变量,000.0 至180.0。

(11) 度数。

(12) Checksum.(检查位)

$GPVTG 地面速度信息

例:$GPVTG,0.0,T,,M,0.00,N,0.0,K*50

字段0:$GPVTG,语句ID,表明该语句为Track Made Good and Ground Speed(VTG)地

面速度信息

字段1:运动角度,000 - 359,(前导位数不足则补0)

字段2:T=真北参照系

字段3:运动角度,000 - 359,(前导位数不足则补0)

字段4:M=磁北参照系

字段5:水平运动速度(0.00)(前导位数不足则补0)

字段6:N=节,Knots

字段7:水平运动速度(0.00)(前导位数不足则补0)

字段8:K=公里/时,km/h

字段9:校验值

GPS模块的驱动安装

GPS模块的应用程序设计

实现读取并解析GPS信息的代码如下:

package model

import (

//"fmt"

//"infrastructure/log"

//"io"

"math"

"strconv"

"strings"

"time"

"infrastructure/github.com/serial"

)

type GpsInfo struct {

Longitude string

Latitude string

LonDirection string

LatDirection string

LongitudeRadian float64

LatitudeRadian float64

IsGpsNormal bool

}

type ComObject struct {

ComName string

Baudrate int

//Com io.ReadWriteCloser

Com *serial.SerialPort

IsComNormal bool

CloseChan chan bool

}

var (

ComName = "COM3"

ComObj = &ComObject{ComName: ComName, Baudrate: 4800, IsComNormal: false, CloseChan: make(chan bool, 1)}

GpsObj = &GpsInfo{IsGpsNormal: false}

BsGpsObj = &GpsInfo{IsGpsNormal: true, LonDirection: "E", LongitudeRadian: 116.63, LatDirection: "N", LatitudeRadian: 40.32}

UeBsDistance float64 = 0

directionMap = map[string]string{

"N": "北纬",

"S": "南纬",

"E": "东经",

"W": "西经",

}

)

func StartGpsModule() {

ComObj.ComName = ComName

if true == ComObj.GetPortName() {

ComName = ComObj.ComName

}

for {

if true == ComObj.IsComNormal {

ComObj.IsComNormal = false

GpsObj.IsGpsNormal = false

continue

}

time.Sleep(time.Second * 5)

if false == ComObj.GetPortName() {

continue

}

err := ComObj.OpenCom()

if nil != err {

GpsObj.IsGpsNormal = false

continue

} else {

ComObj.IsComNormal = true

}

go ComObj.ReceiveFromCom()

}

}

func (this *ComObject) GetPortName() bool {

ports, err := serial.GetPortsList()

if nil != err || 0 == len(ports) {

return false

}

this.ComName = ports[0]

return true

//for _, port := range ports {

//fmt.Printf("Found port: %v\n", port)

//}

}

func (this *ComObject) OpenCom() (err error) {

mode := &serial.Mode{

BaudRate: 4800,

DataBits: 8,

Parity: serial.PARITY_NONE,

StopBits: serial.STOPBITS_ONE,

}

s, err := serial.OpenPort(this.ComName, mode)

if nil != err {

//log.Error("pkg: model, func: OpenCom, method: goserial.OpenPort, errInfo:", err)

return

}

this.Com = s

return nil

}

func (this *ComObject) Close() {

this.Com.Close()

this.CloseChan

}

func (this *ComObject) ReceiveFromCom() {

defer this.Close()

buf := make([]byte, 512)

for {

time.Sleep(time.Second)

n, err := this.Com.Read(buf[0:])

if nil != err {

//log.Error("pkg: model, func: ReceiveFromCom, method: this.Com.Read, errInfo:", err)

return

}

parseGpsInfo(string(buf[:n]))

//fmt.Println("parseRst:", GpsObj)

}

}

func parseGpsInfo(gpsInfo string) {

var parseSuccessfulFlag bool = false

strLineSlice := strings.Split(gpsInfo, "\n")

if 0 == len(strLineSlice) {

GpsObj.IsGpsNormal = false

return

}

for _, oneLine := range strLineSlice {

if 0 == len(oneLine) {

continue

}

if '$' != oneLine[0] {

continue

}

if !strings.Contains(oneLine, "*") {

continue

}

if !strings.Contains(oneLine, "N") && !strings.Contains(oneLine, "S") {

continue

}

if !strings.Contains(oneLine, "E") && !strings.Contains(oneLine, "W") {

continue

}

if strings.Contains(oneLine, "GPGGA") {

if false == parseLongitudeAndLatitudeFromGpgga(oneLine) {

continue

}

parseSuccessfulFlag = true

break

}

if strings.Contains(oneLine, "GPRMC") {

if false == parseLongitudeAndLatitudeFromGprmc(oneLine) {

continue

}

parseSuccessfulFlag = true

break

}

}

if true == parseSuccessfulFlag {

GpsObj.IsGpsNormal = true

UeBsDistance = CalcDistByLongitudeLantitude(*GpsObj, *BsGpsObj)

} else {

GpsObj.IsGpsNormal = false

UeBsDistance = 0

}

}

func parseLongitudeAndLatitudeFromGpgga(gpggaInfo string) bool {

strSlice := strings.Split(gpggaInfo, ",")

if 3 > len(strSlice[2]) || 4 > len(strSlice[4]) {

return false

}

GpsObj.LatDirection = strSlice[3]

GpsObj.LonDirection = strSlice[5]

GpsObj.Latitude = directionMap[strSlice[3]] + strSlice[2][:2] + "度" + strSlice[2][2:] + "分"

GpsObj.Longitude = directionMap[strSlice[5]] + strSlice[4][:3] + "度" + strSlice[4][3:] + "分"

tmpIntPartLat, _ := strconv.ParseFloat(strSlice[2][:2], 32)

tmpDecimalPartLat, _ := strconv.ParseFloat(strSlice[2][2:], 32)

GpsObj.LatitudeRadian = tmpIntPartLat + tmpDecimalPartLat/60

tmpIntPartLon, _ := strconv.ParseFloat(strSlice[4][:3], 32)

tmpDecimalPartLon, _ := strconv.ParseFloat(strSlice[4][3:], 32)

GpsObj.LongitudeRadian = tmpIntPartLon + tmpDecimalPartLon/60

return true

}

func parseLongitudeAndLatitudeFromGprmc(gprmcInfo string) bool {

strSlice := strings.Split(gprmcInfo, ",")

if 3 > len(strSlice[3]) || 4 > len(strSlice[5]) {

return false

}

GpsObj.LatDirection = strSlice[4]

GpsObj.LonDirection = strSlice[6]

GpsObj.Latitude = directionMap[strSlice[4]] + strSlice[3][:2] + "度" + strSlice[3][2:] + "分"

GpsObj.Longitude = directionMap[strSlice[6]] + strSlice[5][:3] + "度" + strSlice[5][3:] + "分"

tmpIntPartLat, _ := strconv.ParseFloat(strSlice[3][:2], 32)

tmpDecimalPartLat, _ := strconv.ParseFloat(strSlice[3][2:], 32)

GpsObj.LatitudeRadian = tmpIntPartLat + tmpDecimalPartLat/60

tmpIntPartLon, _ := strconv.ParseFloat(strSlice[5][:3], 32)

tmpDecimalPartLon, _ := strconv.ParseFloat(strSlice[5][3:], 32)

GpsObj.LongitudeRadian = tmpIntPartLon + tmpDecimalPartLon/60

return true

}

func CalcDistByLongitudeLantitude(gpsPointA, gpsPointB GpsInfo) (distance float64) {

if false == gpsPointA.IsGpsNormal || false == gpsPointB.IsGpsNormal {

return 0

}

lonA, latA := getFormatedLongitudeLantitude(gpsPointA)

lonB, latB := getFormatedLongitudeLantitude(gpsPointB)

c := math.Sin(latA*math.Pi/180)*math.Sin(latB*math.Pi/180)*math.Cos((lonA-lonB)*math.Pi/180) + math.Cos(latA*math.Pi/180)*math.Cos(latB*math.Pi/180)

distance = 6371004 * math.Acos(c)

return

}

func getFormatedLongitudeLantitude(gpsPoint GpsInfo) (lon, lat float64) {

if "E" == gpsPoint.LonDirection {

lon = gpsPoint.LongitudeRadian

} else {

lon = 0 - gpsPoint.LongitudeRadian

}

if "N" == gpsPoint.LatDirection {

lat = 90 - gpsPoint.LatitudeRadian

} else {

lat = 90 + gpsPoint.LatitudeRadian

}

return

}