该包实现了四种基本排序算法:插入排序、归并排序、堆排序和快速排序。 但是这四种排序方法是不公开的,它们只被用于sort包内部使用。所以在对数据集合排序时不必考虑应当选择哪一种排序方法,只要实现了sort.Interface定义的三个方法:获取数据集合长度的Len()方法、比较两个元素大小的Less()方法和交换两个元素位置的Swap()方法,就可以顺利对数据集合进行排序。sort包会根据实际数据自动选择高效的排序算法。 除此之外,为了方便对常用数据类型的操作,sort包提供了对[]int切片、[]float64切片和[]string切片完整支持,主要包括:
- 对基本数据类型切片的排序支持
- 基本数据元素查找
- 判断基本数据类型切片是否已经排好序
- 对排好序的数据集合逆序
3.1.1 数据集合排序
前面已经提到过,对数据集合(包括自定义数据类型的集合)排序需要实现sort.Interface接口的三个方法,我们看以下该接口的定义:
type Interface interface { // 获取数据集合元素个数 Len() int // 如果i索引的数据小于j所以的数据,返回true,不会调用 // 下面的Swap(),即数据升序排序。 Less(i, j int) bool // 交换i和j索引的两个元素的位置 Swap(i, j int) }
数据集合实现了这三个方法后,即可调用该包的Sort()方法进行排序。 Sort()方法定义如下:
func Sort(data Interface)
Sort()方法惟一的参数就是待排序的数据集合。
该包还提供了一个方法可以判断数据集合是否已经排好顺序,该方法的内部实现依赖于我们自己实现的Len()和Less()方法:
func IsSorted(data Interface) bool { n := data.Len() for i := n - 1; i > 0; i-- { if data.Less(i, i-1) { return false } } return true }
下面是一个使用sort包对学生成绩排序的示例:
package main import ( "fmt" "sort" ) //学生成绩结构体 type StuScore struct { //姓名 name string //成绩 score int } type StuScores []StuScore //Len() func (s StuScores) Len() int { return len(s) } //Less():成绩将有低到高排序 func (s StuScores) Less(i, j int) bool { return s[i].score < s[j].score } //Swap() func (s StuScores) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func main() { stus := StuScores{ {"alan", 95}, {"hikerell", 91}, {"acmfly", 96}, {"leao", 90}} fmt.Println("Default:") //原始顺序 for _, v := range stus { fmt.Println(v.name, ":", v.score) } fmt.Println() //StuScores已经实现了sort.Interface接口 sort.Sort(stus) fmt.Println("Sorted:") //排好序后的结构 for _, v := range stus { fmt.Println(v.name, ":", v.score) } //判断是否已经排好顺序,将会打印true fmt.Println("IS Sorted?", sort.IsSorted(stus)) }
程序该示例程序的自定义类型StuScores实现了sort.Interface接口,所以可以将其对象作为sort.Sort()和sort.IsSorted()的参数传入。运行结果:
======Default====== alan : 95 hikerell : 91 acmfly : 96 leao : 90 ======Sorted======= leao : 90 hikerell : 91 alan : 95 acmfly : 96 IS Sorted? true
该示例实现的是升序排序,如果要得到降序排序结果,其实只要修改Less()函数:
//Less():成绩降序排序,只将小于号修改为大于号 func (s StuScores) Less(i, j int) bool { return s[i].score > s[j].score }
此外,sort包提供了Reverse()方法,可以允许将数据按Less()定义的排序方式逆序排序,而不必修改Less()代码。方法定义如下:
func Reverse(data Interface) Interface
我们可以看到Reverse()返回的一个sort.Interface接口类型,整个Reverse()的内部实现比较有趣:
//定义了一个reverse结构类型,嵌入Interface接口 type reverse struct { Interface } //reverse结构类型的Less()方法拥有嵌入的Less()方法相反的行为 //Len()和Swap()方法则会保持嵌入类型的方法行为 func (r reverse) Less(i, j int) bool { return r.Interface.Less(j, i) } //返回新的实现Interface接口的数据类型 func Reverse(data Interface) Interface { return &reverse{data} }
了解内部原理后,可以在学生成绩排序示例中使用Reverse()来实现成绩升序排序:
sort.Sort(sort.Reverse(stus)) for _, v := range stus { fmt.Println(v.name, ":", v.score) }
最后一个方法:Search()
func Search(n int, f func(int) bool) int
官方文档这样描述该方法:
Search()方法回使用“二分查找”算法来搜索某指定切片[0:n],并返回能够使f(i)=true的最 小的i(0<=i<n)值,并且会假定,如果f(i)=true,则f(i+1)=true,即对于切片[0:n],
i之前的切片元素会使f()函数返回false,i及i之后的元素会使f()函数返回true。但是,当 在切片中无法找到时f(i)=true的i时(此时切片元素都不能使f()函数返回true),Search() 方法会返回n。
Search()函数一个常用的使用方式是搜索元素x是否在已经升序排好的切片s中:
x := 11 s := []int{3, 6, 8, 11, 45} //注意已经升序排序 pos := sort.Search(len(s), func(i int) bool { return s[i] >= x }) if pos < len(s) && s[pos] == x { fmt.Println(x, "在s中的位置为:", pos) } else { fmt.Println("s不包含元素", x) }
官方文档还给出了一个猜数字的小程序:
func GuessingGame() { var s string fmt.Printf("Pick an integer from 0 to 100.\n") answer := sort.Search(100, func(i int) bool { fmt.Printf("Is your number <= %d? ", i) fmt.Scanf("%s", &s) return s != "" && s[0] == 'y' }) fmt.Printf("Your number is %d.\n", answer) }
3.1.2 sort包已经支持的内部数据类型排序
前面已经提到,sort包原生支持[]int、[]float64和[]string三种内建数据类型切片的排序操作,即不必我们自己实现相关的Len()、Less()和Swap()方法。
1. IntSlice类型及[]int排序
由于[]int切片排序内部实现及使用方法与[]float64和[]string类似,所以只详细描述该部分。
sort包定义了一个IntSlice类型,并且实现了sort.Interface接口:
type IntSlice []int func (p IntSlice) Len() int { return len(p) } func (p IntSlice) Less(i, j int) bool { return p[i] < p[j] } func (p IntSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } //IntSlice类型定义了Sort()方法,包装了sort.Sort()函数 func (p IntSlice) Sort() { Sort(p) } //IntSlice类型定义了SearchInts()方法,包装了SearchInts()函数 func (p IntSlice) Search(x int) int { return SearchInts(p, x) }
并且提供的sort.Ints()方法使用了该IntSlice类型:
func Ints(a []int) { Sort(IntSlice(a)) }
所以,对[]int切片排序是更常使用sort.Ints(),而不是直接使用IntSlice类型:
s := []int{5, 2, 6, 3, 1, 4} // 未排序的切片数据 sort.Ints(s) fmt.Println(s) //将会输出[1 2 3 4 5 6]
如果要使用降序排序,显然要用前面提到的Reverse()方法:
s := []int{5, 2, 6, 3, 1, 4} // 未排序的切片数据 sort.Sort(sort.Reverse(sort.IntSlice(s))) fmt.Println(s) //将会输出[6 5 4 3 2 1]
如果要查找整数x在切片a中的位置,相对于前面提到的Search()方法,sort包提供了SearchInts():
func SearchInts(a []int, x int) int
注意,SearchInts()的使用条件为:切片a已经升序排序
s := []int{5, 2, 6, 3, 1, 4} // 未排序的切片数据 sort.Ints(s) //排序后的s为[1 2 3 4 5 6] fmt.Println(sort.SearchInts(s, 3)) //将会输出2
2. Float64Slice类型及[]float64排序
实现与Ints类似,只看一下其内部实现:
type Float64Slice []float64 func (p Float64Slice) Len() int { return len(p) } func (p Float64Slice) Less(i, j int) bool { return p[i] < p[j] || isNaN(p[i]) && !isNaN(p[j]) } func (p Float64Slice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p Float64Slice) Sort() { Sort(p) } func (p Float64Slice) Search(x float64) int { return SearchFloat64s(p, x) }
与Sort()、IsSorted()、Search()相对应的三个方法:
func Float64s(a []float64) func Float64sAreSorted(a []float64) bool func SearchFloat64s(a []float64, x float64) int
要说明一下的是,在上面Float64Slice类型定义的Less方法中,有一个内部函数isNaN()。 isNaN()与math包中IsNaN()实现完全相同,sort包之所以不使用math.IsNaN(),完全是基于包依赖性的考虑,应当看到,sort包的实现不依赖与其他任何包。
3. StringSlice类型及[]string排序
两个string对象之间的大小比较是基于“字典序”的。
实现与Ints类似,只看一下其内部实现:
type StringSlice []string func (p StringSlice) Len() int { return len(p) } func (p StringSlice) Less(i, j int) bool { return p[i] < p[j] } func (p StringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p StringSlice) Sort() { Sort(p) } func (p StringSlice) Search(x string) int { return SearchStrings(p, x) }
与Sort()、IsSorted()、Search()相对应的三个方法:
func Strings(a []string) func StringsAreSorted(a []string) bool func SearchStrings(a []string, x string) int