概要
在 上一章节 中,数据结构小节里讲解了大量基础字段,可能你会疑惑需要 #&(!……#(!¥! 来干嘛?接下来我们一起简单了解一下基础概念。再开始研讨今天文章的重点内容。我相信这样你能更好的读懂这篇文章
哈希函数
哈希函数,又称散列算法、散列函数。主要作用是通过特定算法将数据根据一定规则组合重新生成得到一个散列值
而在哈希表中,其生成的散列值常用于寻找其键映射到哪一个桶上。而一个好的哈希函数,应当尽量少的出现哈希冲突,以此保证操作哈希表的时间复杂度(但是哈希冲突在目前来讲,是无法避免的。我们需要 “解决” 它)
链地址法
在哈希操作中,相当核心的一个处理动作就是 “哈希冲突” 的解决。而在 Go map 中采用的就是 "链地址法 " 去解决哈希冲突,又称 "拉链法"。其主要做法是数组 + 链表的数据结构,其溢出节点的存储内存都是动态申请的,因此相对更灵活。而每一个元素都是一个链表。如下图:
桶/溢出桶
type hmap struct {
...
buckets unsafe.Pointer
...
extra *mapextra
}
type mapextra struct {
overflow *[]*bmap
oldoverflow *[]*bmap
nextOverflow *bmap
}
在上章节中,我们介绍了 Go map 中的桶和溢出桶的概念,在其桶中只能存储 8 个键值对元素。当超过 8 个时,将会使用溢出桶进行存储或进行扩容
你可能会有疑问,hint 大于 8 又会怎么样?答案很明显,性能问题,其时间复杂度改变(也就是执行效率出现问题)
前言
概要复习的差不多后,接下来我们将一同研讨 Go map 的另外三个核心行为:赋值、扩容、迁移。正式开始我们的研讨之旅吧 :)
赋值
m := make(map[int32]string)
m[0] = "EDDYCJY"
函数原型
在 map 的赋值动作中,依旧是针对 32/64 位、string、pointer 类型有不同的转换处理,总的函数原型如下:
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer
func mapaccess1_fast32(t *maptype, h *hmap, key uint32) unsafe.Pointer
func mapaccess2_fast32(t *maptype, h *hmap, key uint32) (unsafe.Pointer, bool)
func mapassign_fast32(t *maptype, h *hmap, key uint32) unsafe.Pointer
func mapassign_fast32ptr(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer
func mapaccess1_fast64(t *maptype, h *hmap, key uint64) unsafe.Pointer
func mapaccess2_fast64(t *maptype, h *hmap, key uint64) (unsafe.Pointer, bool)
func mapassign_fast64(t *maptype, h *hmap, key uint64) unsafe.Pointer
func mapassign_fast64ptr(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer
func mapaccess1_faststr(t *maptype, h *hmap, ky string) unsafe.Pointer
func mapaccess2_faststr(t *maptype, h *hmap, ky string) (unsafe.Pointer, bool)
func mapassign_faststr(t *maptype, h *hmap, s string) unsafe.Pointer
...
接下来我们将分成几个部分去看看底层在赋值的时候,都做了些什么处理?
源码
第一阶段:校验和初始化
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
if h == nil {
panic(plainError("assignment to entry in nil map"))
}
...
if h.flags&hashWriting != 0 {
throw("concurrent map writes")
}
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))
h.flags |= hashWriting
if h.buckets == nil {
h.buckets = newobject(t.bucket) // newarray(t.bucket, 1)
}
...
}
alg.hashpanicnewobjectmakemap_small
第二阶段:寻找可插入位和更新既有值
...
again:
bucket := hash & bucketMask(h.B)
if h.growing() {
growWork(t, h, bucket)
}
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
top := tophash(hash)
var inserti *uint8
var insertk unsafe.Pointer
var val unsafe.Pointer
for {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
if b.tophash[i] == empty && inserti == nil {
inserti = &b.tophash[i]
insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
}
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
if t.indirectkey {
k = *((*unsafe.Pointer)(k))
}
if !alg.equal(key, k) {
continue
}
// already have a mapping for key. Update it.
if t.needkeyupdate {
typedmemmove(t.key, k, key)
}
val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
goto done
}
ovf := b.overflow(t)
if ovf == nil {
break
}
b = ovf
}
if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
goto again // Growing the table invalidates everything, so try again
}
...
bucket.tophashLoadFactoroverflow buckets
总的来讲,这一块逻辑做了两件大事,第一是寻找空位,将位置其记录在案,用于后续的插入动作。第二是判断 Key 是否已经存在哈希表中,存在则进行更新。而若是第二种场景,更新完毕后就会进行收尾动作,第一种将继续执行下述的代码
第三阶段:申请新的插入位和插入新值
...
if inserti == nil {
newb := h.newoverflow(t, b)
inserti = &newb.tophash[0]
insertk = add(unsafe.Pointer(newb), dataOffset)
val = add(insertk, bucketCnt*uintptr(t.keysize))
}
if t.indirectkey {
kmem := newobject(t.key)
*(*unsafe.Pointer)(insertk) = kmem
insertk = kmem
}
if t.indirectvalue {
vmem := newobject(t.elem)
*(*unsafe.Pointer)(val) = vmem
}
typedmemmove(t.key, insertk, key)
*inserti = top
h.count++
done:
...
return val
经过前面迭代寻找动作,若没有找到可插入的位置,意味着当前的所有桶都满了,将重新分配一个新溢出桶用于插入动作。最后再在上一步申请的新插入位置,存储键值对,返回该值的内存地址
第四阶段:写入
但是这里又疑惑了?最后为什么是返回内存地址。这是因为隐藏的最后一步写入动作(将值拷贝到指定内存区域)是通过底层汇编配合来完成的,在 runtime 中只完成了绝大部分的动作
func main() {
m := make(map[int32]int32)
m[0] = 6666666
}
对应的汇编部分:
...
0x0099 00153 (test.go:6) CALL runtime.mapassign_fast32(SB)
0x009e 00158 (test.go:6) PCDATA $2, $2
0x009e 00158 (test.go:6) MOVQ 24(SP), AX
0x00a3 00163 (test.go:6) PCDATA $2, $0
0x00a3 00163 (test.go:6) MOVL $6666666, (AX)
mapassignPCDATA
小结
通过前面几个阶段的分析,我们可梳理出一些要点。例如:
不同类型对应哈希函数不一样
高八位用于定位 bucket
低八位用于定位 key,快速试错后再进行完整对比
buckets/overflow buckets 遍历
可插入位的处理
最终写入动作与底层汇编的交互
扩容
在所有动作中,扩容规则是大家较关注的点,也是赋值里非常重要的一环。因此咱们将这节拉出来,对这块细节进行研讨
什么时候扩容
if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
goto again
}
hmap.oldbuckets != nil
load factoroverflow buckets
什么时候受影响
那么什么情况下会对这两个 “值” 有影响呢?如下:
load factoroverflow buckets
因子关系
loadFactor | %overflow | bytes/entry | hitprobe | missprobe |
---|---|---|---|---|
4.00 | 2.13 | 20.77 | 3.00 | 4.00 |
4.50 | 4.05 | 17.30 | 3.25 | 4.50 |
5.00 | 6.85 | 14.77 | 3.50 | 5.00 |
5.50 | 10.55 | 12.94 | 3.75 | 5.50 |
6.00 | 15.27 | 11.67 | 4.00 | 6.00 |
6.50 | 20.90 | 10.79 | 4.25 | 6.50 |
7.00 | 27.14 | 10.15 | 4.50 | 7.00 |
overflow buckets
这一组数据能够体现出不同的负载因子会给哈希表的动作带来怎么样的影响。而在上一章节我们有提到默认的负载因子是 6.5 (loadFactorNum/loadFactorDen),可以看出来是经过测试后取出的一个比较合理的因子。能够较好的影响哈希表的扩容动作的时机
源码剖析
func hashGrow(t *maptype, h *hmap) {
bigger := uint8(1)
if !overLoadFactor(h.count+1, h.B) {
bigger = 0
h.flags |= sameSizeGrow
}
oldbuckets := h.buckets
newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)
...
h.oldbuckets = oldbuckets
h.buckets = newbuckets
h.nevacuate = 0
h.noverflow = 0
if h.extra != nil && h.extra.overflow != nil {
if h.extra.oldoverflow != nil {
throw("oldoverflow is not nil")
}
h.extra.oldoverflow = h.extra.overflow
h.extra.overflow = nil
}
if nextOverflow != nil {
if h.extra == nil {
h.extra = new(mapextra)
}
h.extra.nextOverflow = nextOverflow
}
// the actual copying of the hash table data is done incrementally
// by growWork() and evacuate().
}
第一阶段:确定扩容容量规则
hashGrow
if !overLoadFactor(h.count+1, h.B) {
bigger = 0
h.flags |= sameSizeGrow
}
load factoroverflow bucketssameSizeGrow
bigger := uint8(1)
...
newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)
load factor
第二阶段:初始化、交换新旧 桶/溢出桶
主要是针对扩容的相关数据前置处理,涉及 buckets/oldbuckets、overflow/oldoverflow 之类与存储相关的字段
...
oldbuckets := h.buckets
newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)
flags := h.flags &^ (iterator | oldIterator)
if h.flags&iterator != 0 {
flags |= oldIterator
}
h.B += bigger
...
h.noverflow = 0
if h.extra != nil && h.extra.overflow != nil {
...
h.extra.oldoverflow = h.extra.overflow
h.extra.overflow = nil
}
if nextOverflow != nil {
...
h.extra.nextOverflow = nextOverflow
}
newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)
然而并不,内部只会先进行预分配,当使用的时候才会真正的去初始化
第三阶段:扩容
growWorkevacuate
func growWork(t *maptype, h *hmap, bucket uintptr) {
evacuate(t, h, bucket&h.oldbucketmask())
if h.growing() {
evacuate(t, h, h.nevacuate)
}
}
evacuate
evacuate(t, h, bucket&h.oldbucketmask()): 将 oldbucket 中的元素迁移 rehash 到扩容后的新 bucket
evacuate(t, h, h.nevacuate): 如果当前正在进行扩容,则再进行多一次迁移
另外,在执行扩容动作的时候,可以发现都是以 bucket/oldbucket 为单位的,而不是传统的 buckets/oldbuckets。再结合代码分析,可得知在 Go map 中扩容是采取增量扩容的方式,并非一步到位
为什么是增量扩容?
如果是全量扩容的话,那问题就来了。假设当前 hmap 的容量比较大,直接全量扩容的话,就会导致扩容要花费大量的时间和内存,导致系统卡顿,最直观的表现就是慢。显然,不能这么做
而增量扩容,就可以解决这个问题。它通过每一次的 map 操作行为去分摊总的一次性动作。因此有了 buckets/oldbuckets 的设计,它是逐步完成的,并且会在扩容完毕后才进行清空
小结
通过前面三个阶段的分析,可以得知扩容的大致过程。我们阶段性总结一下。主要如下:
根据需扩容的原因不同(overLoadFactor/tooManyOverflowBuckets),分为两类容量规则方向,为等量扩容(不改变原有大小)或双倍扩容
新申请的扩容空间(newbuckets/newoverflow)都是预分配,等真正使用的时候才会初始化
扩容完毕后(预分配),不会马上就进行迁移。而是采取增量扩容的方式,当有访问到具体 bukcet 时,才会逐渐的进行迁移(将 oldbucket 迁移到 bucket)
这时候又想到,既然迁移是逐步进行的。那如果在途中又要扩容了,怎么办?
again:
bucket := hash & bucketMask(h.B)
...
if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
goto again
}
goto again
迁移
evacuate
type evacDst struct {
b *bmap
i int
k unsafe.Pointer
v unsafe.Pointer
}
evacDst
b: 当前目标桶
i: 当前目标桶存储的键值对数量
k: 指向当前 key 的内存地址
v: 指向当前 value 的内存地址
func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
newbit := h.noldbuckets()
if !evacuated(b) {
var xy [2]evacDst
x := &xy[0]
x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
x.k = add(unsafe.Pointer(x.b), dataOffset)
x.v = add(x.k, bucketCnt*uintptr(t.keysize))
if !h.sameSizeGrow() {
y := &xy[1]
y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
y.k = add(unsafe.Pointer(y.b), dataOffset)
y.v = add(y.k, bucketCnt*uintptr(t.keysize))
}
for ; b != nil; b = b.overflow(t) {
...
}
if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 {
b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
ptr := add(b, dataOffset)
n := uintptr(t.bucketsize) - dataOffset
memclrHasPointers(ptr, n)
}
}
if oldbucket == h.nevacuate {
advanceEvacuationMark(h, t, newbit)
}
}
!evacuated(b)sameSizeGrowevacDstevacDsttypedmemmoveadvanceEvacuationMarkhmap.nevacuatebucketEvacuatedhmap.oldbucketsh.extra.oldoverflow
总的来讲,就是计算得到所需数据的位置。再根据当前的迁移状态、扩容规则进行数据分流迁移。结束后进行清理,促进 GC 的回收
总结
在本章节我们主要研讨了 Go map 的几个核心动作,分别是:“赋值、扩容、迁移” 。而通过本次的阅读,我们能够更进一步的认识到一些要点,例如:
赋值的时候会触发扩容吗?
负载因子是什么?过高会带来什么问题?它的变动会对哈希表操作带来什么影响吗?
溢出桶越多会带来什么问题?
是否要扩容的基准条件是什么?
扩容的容量规则是怎么样的?
扩容的步骤是怎么样的?涉及到了哪些数据结构?
扩容是一次性扩容还是增量扩容?
正在扩容的时候又要扩容怎么办?
扩容时的迁移分流动作是怎么样的?
在扩容动作中,底层汇编承担了什么角色?做了什么事?
在 buckets/overflow buckets 中寻找时,是如何 “快速” 定位值的?低八位、高八位的用途?
空槽有可能出现在任意位置吗?假设已经没有空槽了,但是又有新值要插入,底层会怎么处理
最后希望你通过本文的阅读,能更清楚地了解到 Go map 是怎么样运作的 :)
Golang语言社区
ID:Golangweb
www.Golang.LTD
游戏服务器架构丨分布式技术丨大数据丨游戏算法学习