今天在写码之时,发现了同事用到了sync.pool。因不知其因,遂Google之。虽然大概知道其原因和用法。还不能融汇贯通。故写此记,方便日后查阅。直至明了。
正文
在高并发或者大量的数据请求的场景中,我们会遇到很多问题,垃圾回收就是其中之一(garbage collection),为了减少优化GC,我们一般想到的方法就是能够让对象得以重用。这就需要一个对象池来存储待回收对象,等待下次重用,从而减少对象产生数量。我们可以把sync.Pool类型值看作是存放可被重复使用的值的容器。此类容器是自动伸缩的、高效的,同时也是并发安全的。为了描述方便,我们也会把sync.Pool类型的值称为临时对象池,而把存于其中的值称为对象值。这个类设计的目的是用来保存和复用临时对象,以减少内存分配,降低CG压力。
我们看下Go的源码:
// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package sync import ( "internal/race" "runtime" "sync/atomic" "unsafe" ) // A Pool is a set of temporary objects that may be individually saved and // retrieved. // // Any item stored in the Pool may be removed automatically at any time without // notification. If the Pool holds the only reference when this happens, the // item might be deallocated. // // A Pool is safe for use by multiple goroutines simultaneously. // // Pool's purpose is to cache allocated but unused items for later reuse, // relieving pressure on the garbage collector. That is, it makes it easy to // build efficient, thread-safe free lists. However, it is not suitable for all // free lists. // // An appropriate use of a Pool is to manage a group of temporary items // silently shared among and potentially reused by concurrent independent // clients of a package. Pool provides a way to amortize allocation overhead // across many clients. // // An example of good use of a Pool is in the fmt package, which maintains a // dynamically-sized store of temporary output buffers. The store scales under // load (when many goroutines are actively printing) and shrinks when // quiescent. // // On the other hand, a free list maintained as part of a short-lived object is // not a suitable use for a Pool, since the overhead does not amortize well in // that scenario. It is more efficient to have such objects implement their own // free list. // type Pool struct { local unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal localSize uintptr // size of the local array // New optionally specifies a function to generate // a value when Get would otherwise return nil. // It may not be changed concurrently with calls to Get. New func() interface{} } // Local per-P Pool appendix. type poolLocal struct { private interface{} // Can be used only by the respective P. shared []interface{} // Can be used by any P. Mutex // Protects shared. pad [128]byte // Prevents false sharing. } // Put adds x to the pool. func (p *Pool) Put(x interface{}) { if race.Enabled { // Under race detector the Pool degenerates into no-op. // It's conforming, simple and does not introduce excessive // happens-before edges between unrelated goroutines. return } if x == nil { return } l := p.pin() if l.private == nil { l.private = x x = nil } runtime_procUnpin() if x == nil { return } l.Lock() l.shared = append(l.shared, x) l.Unlock() } // Get selects an arbitrary item from the Pool, removes it from the // Pool, and returns it to the caller. // Get may choose to ignore the pool and treat it as empty. // Callers should not assume any relation between values passed to Put and // the values returned by Get. // // If Get would otherwise return nil and p.New is non-nil, Get returns // the result of calling p.New. func (p *Pool) Get() interface{} { if race.Enabled { if p.New != nil { return p.New() } return nil } l := p.pin() x := l.private l.private = nil runtime_procUnpin() if x != nil { return x } l.Lock() last := len(l.shared) - 1 if last >= 0 { x = l.shared[last] l.shared = l.shared[:last] } l.Unlock() if x != nil { return x } return p.getSlow() } func (p *Pool) getSlow() (x interface{}) { // See the comment in pin regarding ordering of the loads. size := atomic.LoadUintptr(&p.localSize) // load-acquire local := p.local // load-consume // Try to steal one element from other procs. pid := runtime_procPin() runtime_procUnpin() for i := 0; i < int(size); i++ { l := indexLocal(local, (pid+i+1)%int(size)) l.Lock() last := len(l.shared) - 1 if last >= 0 { x = l.shared[last] l.shared = l.shared[:last] l.Unlock() break } l.Unlock() } if x == nil && p.New != nil { x = p.New() } return x } // pin pins the current goroutine to P, disables preemption and returns poolLocal pool for the P. // Caller must call runtime_procUnpin() when done with the pool. func (p *Pool) pin() *poolLocal { pid := runtime_procPin() // In pinSlow we store to localSize and then to local, here we load in opposite order. // Since we've disabled preemption, GC can not happen in between. // Thus here we must observe local at least as large localSize. // We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness). s := atomic.LoadUintptr(&p.localSize) // load-acquire l := p.local // load-consume if uintptr(pid) < s { return indexLocal(l, pid) } return p.pinSlow() } func (p *Pool) pinSlow() *poolLocal { // Retry under the mutex. // Can not lock the mutex while pinned. runtime_procUnpin() allPoolsMu.Lock() defer allPoolsMu.Unlock() pid := runtime_procPin() // poolCleanup won't be called while we are pinned. s := p.localSize l := p.local if uintptr(pid) < s { return indexLocal(l, pid) } if p.local == nil { allPools = append(allPools, p) } // If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one. size := runtime.GOMAXPROCS(0) local := make([]poolLocal, size) atomic.StorePointer((*unsafe.Pointer)(&p.local), unsafe.Pointer(&local[0])) // store-release atomic.StoreUintptr(&p.localSize, uintptr(size)) // store-release return &local[pid] } func poolCleanup() { // This function is called with the world stopped, at the beginning of a garbage collection. // It must not allocate and probably should not call any runtime functions. // Defensively zero out everything, 2 reasons: // 1. To prevent false retention of whole Pools. // 2. If GC happens while a goroutine works with l.shared in Put/Get, // it will retain whole Pool. So next cycle memory consumption would be doubled. for i, p := range allPools { allPools[i] = nil for i := 0; i < int(p.localSize); i++ { l := indexLocal(p.local, i) l.private = nil for j := range l.shared { l.shared[j] = nil } l.shared = nil } p.local = nil p.localSize = 0 } allPools = []*Pool{} } var ( allPoolsMu Mutex allPools []*Pool ) func init() { runtime_registerPoolCleanup(poolCleanup) } func indexLocal(l unsafe.Pointer, i int) *poolLocal { return &(*[1000000]poolLocal)(l)[i] } // Implemented in runtime. func runtime_registerPoolCleanup(cleanup func()) func runtime_procPin() int func runtime_procUnpin()
sync.Pool 最常用的两个函数Get/Put
var pool = &sync.Pool{New:func()interface{}{return NewObject()}} pool.Put() Pool.Get()
对象池在Get的时候没有里面没有对象会返回nil,所以我们需要New function来确保当获取对象对象池为空时,重新生成一个对象返回,前者的功能是从池中获取一个interface{}类型的值,而后者的作用则是把一个interface{}类型的值放置于池中。
// 建立对象 var pool = &sync.Pool{New:func()interface{}{return "Hello,xiequan"}} // 准备放入的字符串 val := "Hello,World!" // 放入 pool.Put(val) // 取出 log.Println(pool.Get()) // 再取就没有了,会自动调用NEW log.Println(pool.Get())
再来看一个例子:
package main import ( "fmt" "runtime" "runtime/debug" "sync" "sync/atomic" ) func main() { // 禁用GC,并保证在main函数执行结束前恢复GC defer debug.SetGCPercent(debug.SetGCPercent(-1)) var count int32 newFunc := func() interface{} { return atomic.AddInt32(&count, 1) } pool := sync.Pool{New: newFunc} // New 字段值的作用 v1 := pool.Get() fmt.Printf("v1: %v\n", v1) // 临时对象池的存取 pool.Put(newFunc()) pool.Put(newFunc()) pool.Put(newFunc()) v2 := pool.Get() fmt.Printf("v2: %v\n", v2) // 垃圾回收对临时对象池的影响 debug.SetGCPercent(100) runtime.GC() v3 := pool.Get() fmt.Printf("v3: %v\n", v3) pool.New = nil v4 := pool.Get() fmt.Printf("v4: %v\n", v4) }
通过Get方法获取到的值是任意的。如果一个临时对象池的Put方法未被调用过,且它的New字段也未曾被赋予一个非nil的函数值,那么它的Get方法返回的结果值就一定会是nil。Get方法返回的不一定就是存在于池中的值。不过,如果这个结果值是池中的,那么在该方法返回它之前就一定会把它从池中删除掉。
这样一个临时对象池在功能上看似与一个通用的缓存池相差无几。但是实际上,临时对象池本身的特性决定了它是一个“个性”非常鲜明的同步工具。我们在这里说明它的两个非常突出的特性。
来看一个syscn.pool和bytes.Buffer使用的例子:
type Dao struct { bp sync.Pool } func New(c *conf.Config) (d *Dao) { d = &Dao{ bp: sync.Pool{ New: func() interface{} { return &bytes.Buffer{} }, }, } return } func (d *Dao) Infoc(args ...string) (value string, err error) { if len(args) == 0 { return } // fetch a buf from bufpool buf, ok := d.bp.Get().(*bytes.Buffer) if !ok { return "", ErrType } // append first arg if _, err := buf.WriteString(args[0]); err != nil { return "", err } for _, arg := range args[1:] { // append ,arg if _, err := buf.WriteString(defaultSpliter); err != nil { return "", err } if _, err := buf.WriteString(strings.Replace(arg, defaultSpliter, defaultReplacer, -1)); err != nil { return "", err } } value = buf.String() buf.Reset() d.bp.Put(buf) return }
在实现过程中还要特别注意的是Pool本身也是一个对象,要把Pool对象在程序开始的时候初始化为全局唯一。
对象池使用是较简单的,但原生的sync.Pool有个较大的问题:我们不能自由控制Pool中元素的数量,放进Pool中的对象每次GC发生时都会被清理掉。这使得sync.Pool做简单的对象池还可以,但做连接池就有点心有余而力不足了,比如:在高并发的情景下一旦Pool中的连接被GC清理掉,那每次连接DB都需要重新三次握手建立连接,这个代价就较大了。
总结
对象池的一些适用场景(比如作为临时且状态无关的数据的暂存处),以及一些不适用的场景(比如用来存放数据库连接的实例)。如果我们在做实现技术的选型的时候把临时对象池作为了候选之一,那么就应该好好想想它的“个性”是不是符合你的需要。如果真的适合,那么它的特性一定会为你的程序增光添彩,无论在功能上还是在性能上。而如果它被用在了不恰当的地方,那么就只能适得其反了
参考文献: