append扩容机制

在《切片传递的隐藏危机》一文,小菜刀有简单地提及到切片扩容的问题。在读者讨论群,有人举了以下例子,并想得到一个合理的回答。

1package main
2
3func main() {
4    s := []int{1,2}
5    s = append(s, 3,4,5)
6    println(cap(s))
7}
8
9// output: 6
append
appendbuiltinbuiltin.go
 1// The append built-in function appends elements to the end of a slice. If
 2// it has sufficient capacity, the destination is resliced to accommodate the
 3// new elements. If it does not, a new underlying array will be allocated.
 4// Append returns the updated slice. It is therefore necessary to store the
 5// result of append, often in the variable holding the slice itself:
 6//    slice = append(slice, elem1, elem2)
 7//    slice = append(slice, anotherSlice...)
 8// As a special case, it is legal to append a string to a byte slice, like this:
 9//    slice = append([]byte("hello "), "world"...)
10func append(slice []Type, elems ...Type) []Type
11

append 会追加一个或多个数据至 slice 中,这些数据会存储至 slice 的底层数组。其中,底层数组长度是固定的,如果数组的剩余空间足以容纳追加的数据,则可以正常地将数据存入该数组。一旦追加数据后总长度超过原数组长度,原数组就无法满足存储追加数据的要求。此时会怎么处理呢?

同时我们发现,该文件中仅仅定义了函数签名,并没有包含函数实现的任何代码。这里我们不免好奇,append究竟是如何实现的呢?

编译过程

为了回答上述问题,我们不妨从编译入手。Go编译可分为四个阶段:词法与语法分析、类型检查与抽象语法树(AST)转换、中间代码生成和生成最后的机器码。

src/cmd/compile/internal/gc/typecheck.go
1func typecheck1(n *Node, top int) (res *Node) {
2    ...
3    switch n.Op {
4    case OAPPEND:
5    ...
6}
src/cmd/compile/internal/gc/walk.go
 1func walkexpr(n *Node, init *Nodes) *Node {
 2    ...
 3    case OAPPEND:
 4            // x = append(...)
 5            r := n.Right
 6            if r.Type.Elem().NotInHeap() {
 7                yyerror("%v can't be allocated in Go; it is incomplete (or unallocatable)", r.Type.Elem())
 8            }
 9            switch {
10            case isAppendOfMake(r):
11                // x = append(y, make([]T, y)...)
12                r = extendslice(r, init)
13            case r.IsDDD():
14                r = appendslice(r, init) // also works for append(slice, string).
15            default:
16                r = walkappend(r, init, n)
17            }
18    ...
19}  
src/cmd/compile/internal/gc/ssa.go
1// append converts an OAPPEND node to SSA.
2// If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
3// adds it to s, and returns the Value.
4// If inplace is true, it writes the result of the OAPPEND expression n
5// back to the slice being appended to, and returns nil.
6// inplace MUST be set to false if the slice can be SSA'd.
7func (s *state) append(n *Node, inplace bool) *ssa.Value {
8    ...
9}
state.appendinplacestate.appendappend(s, e1, e2, e3)
 1    // If inplace is false, process as expression "append(s, e1, e2, e3)": 
 2   ptr, len, cap := s
 3     newlen := len + 3
 4     if newlen > cap {
 5         ptr, len, cap = growslice(s, newlen)
 6         newlen = len + 3 // recalculate to avoid a spill
 7     }
 8     // with write barriers, if needed:
 9     *(ptr+len) = e1
10     *(ptr+len+1) = e2
11     *(ptr+len+2) = e3
12     return makeslice(ptr, newlen, cap)
slice = append(slice, 1, 2, 3)
 1    // If inplace is true, process as statement "s = append(s, e1, e2, e3)":
 2
 3     a := &s
 4     ptr, len, cap := s
 5     newlen := len + 3
 6     if uint(newlen) > uint(cap) {
 7        newptr, len, newcap = growslice(ptr, len, cap, newlen)
 8        vardef(a)       // if necessary, advise liveness we are writing a new a
 9        *a.cap = newcap // write before ptr to avoid a spill
10        *a.ptr = newptr // with write barrier
11     }
12     newlen = len + 3 // recalculate to avoid a spill
13     *a.len = newlen
14     // with write barriers, if needed:
15     *(ptr+len) = e1
16     *(ptr+len+1) = e2
17     *(ptr+len+2) = e3
inpalceruntime.growslice
slice=append(slice,1)

img

情况1,切片的底层数组还有可容纳追加元素的空间。

img

情况2,切片的底层数组已无可容纳追加元素的空间,需调用扩容函数,进行扩容。

扩容函数

growslicecap
growslice
  1. 初步确定切片容量
 1func growslice(et *_type, old slice, cap int) slice {
 2  ...
 3  newcap := old.cap
 4    doublecap := newcap + newcap
 5    if cap > doublecap {
 6        newcap = cap
 7    } else {
 8        if old.len < 1024 {
 9            newcap = doublecap
10        } else {
11            // Check 0 < newcap to detect overflow
12            // and prevent an infinite loop.
13            for 0 < newcap && newcap < cap {
14                newcap += newcap / 4
15            }
16            // Set newcap to the requested cap when
17            // the newcap calculation overflowed.
18            if newcap <= 0 {
19                newcap = cap
20            }
21        }
22    }
23  ...
24}  
capdoublecapnewcap
  1. 计算容量所需内存大小
 1    var overflow bool
 2    var lenmem, newlenmem, capmem uintptr
 3
 4    switch {
 5    case et.size == 1:
 6        lenmem = uintptr(old.len)
 7        newlenmem = uintptr(cap)
 8        capmem = roundupsize(uintptr(newcap))
 9        overflow = uintptr(newcap) > maxAlloc
10        newcap = int(capmem)
11    case et.size == sys.PtrSize:
12        lenmem = uintptr(old.len) * sys.PtrSize
13        newlenmem = uintptr(cap) * sys.PtrSize
14        capmem = roundupsize(uintptr(newcap) * sys.PtrSize)
15        overflow = uintptr(newcap) > maxAlloc/sys.PtrSize
16        newcap = int(capmem / sys.PtrSize)
17    case isPowerOfTwo(et.size):
18        var shift uintptr
19        if sys.PtrSize == 8 {
20            // Mask shift for better code generation.
21            shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
22        } else {
23            shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
24        }
25        lenmem = uintptr(old.len) << shift
26        newlenmem = uintptr(cap) << shift
27        capmem = roundupsize(uintptr(newcap) << shift)
28        overflow = uintptr(newcap) > (maxAlloc >> shift)
29        newcap = int(capmem >> shift)
30    default:
31        lenmem = uintptr(old.len) * et.size
32        newlenmem = uintptr(cap) * et.size
33        capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
34        capmem = roundupsize(capmem)
35        newcap = int(capmem / et.size)
36    }

在该环节,通过判断切片元素的字节大小是否为1,系统指针大小(32位为4,64位为8)或2的倍数,进入相应所需内存大小的计算逻辑。

roundupsizesizemallocgc
 1func roundupsize(size uintptr) uintptr {
 2    if size < _MaxSmallSize {
 3        if size <= smallSizeMax-8 {
 4            return uintptr(class_to_size[size_to_class8[divRoundUp(size, smallSizeDiv)]])
 5        } else {
 6            return uintptr(class_to_size[size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]])
 7        }
 8    }
 9
10  // Go的内存管理虚拟地址页大小为 8k(_PageSize)
11  // 当size的大小即将溢出时,就不采用向上取整的做法,直接用当前期望size值。
12    if size+_PageSize < size {
13        return size
14    }
15    return alignUp(size, _PageSize)
16}
<_MaxSmallSizedivRoundUpclass_to_sizesize_to_class8size_to_class128
1// _NumSizeClasses = 67 代表67种特定大小的对象类型
2var class_to_size = [_NumSizeClasses]uint16{0, 8, 16, 32, 48, 64, 80, 96, 112,...}
alignUpsize_PageSize
  1. 内存分配
 1    if overflow || capmem > maxAlloc {
 2        panic(errorString("growslice: cap out of range"))
 3    }
 4
 5    var p unsafe.Pointer
 6    if et.ptrdata == 0 {
 7        p = mallocgc(capmem, nil, false)
 8        memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
 9    } else {
10        p = mallocgc(capmem, et, true)
11        if lenmem > 0 && writeBarrier.enabled {
12            bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(old.array), lenmem-et.size+et.ptrdata)
13        }
14    }
15    memmove(p, old.array, lenmem)
16
17    return slice{p, old.len, newcap}
panic
mallocgccapmemmemclrNoHeapPointersbulkBarrierPreWriteSrcOnly
memmovep
growslicelen =3cap=3slice=append(slice,1)

img

growslicelen

总结

这里回到文章开头中的例子

1package main
2
3func main() {
4    s := []int{1,2}
5    s = append(s, 3,4,5)
6    println(cap(s))
7}
sappendgrowslicecapdoublecapdoublecapcapnewcap=5intsys.PtrSizeroundupsizecapmemnewcap
append

在扩容的容量确定上,相对比较复杂,它与CPU位数、元素大小、是否包含指针、追加个数等都有关系。当我们看完扩容源码逻辑后,发现去纠结它的扩容确切值并没什么必要。

在实际使用中,如果能够确定切片的容量范围,比较合适的做法是:切片初始化时就分配足够的容量空间,在append追加操作时,就不用再考虑扩容带来的性能损耗问题。

 1func BenchmarkAppendFixCap(b *testing.B) {
 2    for i := 0; i < b.N; i++ {
 3        a := make([]int, 0, 1000)
 4        for i := 0; i < 1000; i++ {
 5            a = append(a, i)
 6        }
 7    }
 8}
 9
10func BenchmarkAppend(b *testing.B) {
11    for i := 0; i < b.N; i++ {
12        a := make([]int, 0)
13        for i := 0; i < 1000; i++ {
14            a = append(a, i)
15        }
16    }
17}

它们的压测结果如下,孰优孰劣,一目了然。

1 $ go test -bench=. -benchmem
2
3BenchmarkAppendFixCap-8          1953373               617 ns/op               0 B/op          0 allocs/op
4BenchmarkAppend-8                 426882              2832 ns/op           16376 B/op         11 allocs/op