如何识别完整的请求响应数据包是连接多路复用方案可行的关键,因此需要引入协议。

  • 这里采用 thrift header protocol 协议,通过消息头判断数据包完整性,通过 sequence id 标记请求和响应的对应关系。
ZeroCopy

这里所说的 ZeroCopy,指的是 Linux 所提供的 ZeroCopy 的能力。上一章中我们说了业务层的零拷贝,而众所周知,当我们调用 sendmsg 系统调用发包的时候,实际上仍然是会产生一次数据的拷贝的,并且在大包场景下这个拷贝的消耗非常明显。以 100M 为例,perf 可以看到如下结果:

这还仅仅是普通 tcp 发包的占用,在我们的场景下,大部分服务都会接入 Service Mesh,所以在一次发包中,一共会有 3 次拷贝:业务进程到内核、内核到 sidecar、sidecar 再到内核。这使得有大包需求的业务,拷贝所导致的 cpu 占用会特别明显,如下图:

为了解决这个问题,我们选择了使用 Linux 提供的 ZeroCopy API(在 4.14 以后支持 send;5.4 以后支持 receive)。但是这引入了一个额外的工程问题:ZeroCopy send API 和原先调用方式不兼容,无法很好地共存。这里简单介绍一下 ZeroCopy send 的工作方式:业务进程调用 sendmsg 之后,sendmsg 会记录下 iovec 的地址并立即返回,这时候业务进程不能释放这段内存,需要通过 epoll 等待内核回调一个信号表明某段 iovec 已经发送成功之后才能释放。由于我们并不希望更改业务方的使用方法,需要对上层提供同步收发的接口,所以很难基于现有的 API 同时提供 ZeroCopy 和非 ZeroCopy 的抽象;而由于 ZeroCopy 在小包场景下是有性能损耗的,所以也不能将这个作为默认的选项。

于是,字节跳动框架组和字节跳动内核组合作,由内核组提供了同步的接口:当调用 sendmsg 的时候,内核会监听并拦截内核原先给业务的回调,并且在回调完成后才会让 sendmsg 返回。这使得我们无需更改原有模型,可以很方便地接入 ZeroCopy send。同时,字节跳动内核组还实现了基于 unix domain socket 的 ZeroCopy,可以使得业务进程与 Mesh sidecar 之间的通信也达到零拷贝。

在使用了 ZeroCopy send 后,perf 可以看到内核不再有 copy 的占用:

img从 cpu 占用数值上看,大包场景下 ZeroCopy 能够比非 ZeroCopy 节省一半的 cpu。

Go 调度导致的延迟问题分享

在我们实践过程中,发现我们新写的 netpoll 虽然在 avg 延迟上表现胜于 Go 原生的 net 库,但是在 p99 和 max 延迟上要普遍略高于 Go 原生的 net 库,并且尖刺也会更加明显,如下图(Go 1.13,蓝色为 netpoll + 多路复用,绿色为 netpoll + 长连接,黄色为 net 库 + 长连接):

我们尝试了很多种办法去优化,但是收效甚微。最终,我们定位出这个延迟并非是由于 netpoll 本身的开销导致的,而是由于 go 的调度导致的,比如说:

  1. 由于在 netpoll 中,SubReactor 本身也是一个 goroutine,受调度影响,不能保证 EpollWait 回调之后马上执行,所以这一块会有延迟;
  2. 同时,由于用来处理 I/O 事件的 SubReactor 和用来处理连接监听的 MainReactor 本身也是 goroutine,所以实际上很难保证在多核情况之下,这些 Reactor 能并行执行;甚至在最极端情况之下,可能这些 Reactor 会挂在同一个 P 下,最终变成了串行执行,无法充分利用多核优势;
  3. 由于 EpollWait 回调之后,SubReactor 内是串行处理 I/O 事件的,导致排在最后的事件可能会有长尾问题;
  4. 在连接多路复用场景下,由于每个连接绑定了一个 SubReactor,故延迟完全取决于这个 SubReactor 的调度,导致尖刺会更加明显。

由于 Go 在 runtime 中对于 net 库有做特殊优化,所以 net 库不会有以上情况;同时 net 库是 goroutine-per-connection 的模型,所以能确保请求能并行执行而不会相互影响。

对于以上这个问题,我们目前解决的思路有两个:

  1. 修改 Go runtime 源码,在 Go runtime 中注册一个回调,每次调度时调用 EpollWait,把获取到的 fd 传递给回调执行;
  2. 与字节跳动内核组合作,支持同时批量读/写多个连接,解决串行问题。另外,经过我们的测试,Go 1.14 能够使得延迟略有降低同时更加平稳,但是所能达到的极限 QPS 更低。希望我们的思路能够给业界同样遇到此问题的同学提供一些参考。
后记

希望以上的分享能够对社区有所帮助。同时,我们也在加速建设 netpoll 以及基于 netpoll 的新框架 KiteX。欢迎各位感兴趣的同学加入我们,共同建设 Go 语言生态!

参考资料 更多分享 字节跳动基础架构团队

字节跳动基础架构团队是支撑字节跳动旗下包括抖音、今日头条、西瓜视频、火山小视频在内的多款亿级规模用户产品平稳运行的重要团队,为字节跳动及旗下业务的快速稳定发展提供了保证和推动力。

公司内,基础架构团队主要负责字节跳动私有云建设,管理数以万计服务器规模的集群,负责数万台计算/存储混合部署和在线/离线混合部署,支持若干 EB 海量数据的稳定存储。

文化上,团队积极拥抱开源和创新的软硬件架构。我们长期招聘基础架构方向的同学,具体可参见 job.bytedance.com (文末“阅读原文”),感兴趣可以联系邮箱 。


img