原文:https://www.cnblogs.com/nima/p/12724831.html

栈和队列

一、栈 Stack 和队列 Queue

我们日常生活中,都需要将物品排列,或者安排事情的先后顺序。更通俗地讲,我们买东西时,人太多的情况下,我们要排队,排队也有先后顺序,有些人早了点来,排完队就离开了,有些人晚一点,才刚刚进去人群排队。

123
栈(stack)队列 (queue)Collection
stackqueue
链表数组栈(stack)队列 (queue)
index

链表实现:只支持顺序访问,在某些遍历操作中查询速度慢,但增删元素快。

二、实现数组栈 ArrayStack

数组形式的下压栈,后进先出:

主要使用可变长数组来实现。

// 数组栈,后进先出
type ArrayStack struct {
    array []string   // 底层切片
    size  int        // 栈的元素数量
    lock  sync.Mutex // 为了并发安全使用的锁
}

我们来分析它的各操作。

2.1.入栈

// 入栈
func (stack *ArrayStack) Push(v string) {
    stack.lock.Lock()
    defer stack.lock.Unlock()

    // 放入切片中,后进的元素放在数组最后面
    stack.array = append(stack.array, v)

    // 栈中元素数量+1
    stack.size = stack.size + 1
}

将元素入栈,会先加锁实现并发安全。

O(1)

2.2.出栈

func (stack *ArrayStack) Pop() string {
    stack.lock.Lock()
    defer stack.lock.Unlock()

    // 栈中元素已空
    if stack.size == 0 {
        panic("empty")
    }

    // 栈顶元素
    v := stack.array[stack.size-1]

    // 切片收缩,但可能占用空间越来越大
    //stack.array = stack.array[0 : stack.size-1]

    // 创建新的数组,空间占用不会越来越大,但可能移动元素次数过多
    newArray := make([]string, stack.size-1, stack.size-1)
    for i := 0; i < stack.size-1; i++ {
        newArray[i] = stack.array[i]
    }
    stack.array = newArray

    // 栈中元素数量-1
    stack.size = stack.size - 1
    return v
}

元素出栈,会先加锁实现并发安全。

如果栈大小为0,那么不允许出栈,否则从数组的最后面拿出元素。

元素取出后:

stack.array[0 : stack.size-1]O(1)newArrayO(n)

最后元素数量减一,并返回值。

2.3.获取栈顶元素

// 获取栈顶元素
func (stack *ArrayStack) Peek() string {
    // 栈中元素已空
    if stack.size == 0 {
        panic("empty")
    }

    // 栈顶元素值
    v := stack.array[stack.size-1]
    return v
}
O(1)

2.4.获取栈大小和判定是否为空

// 栈大小
func (stack *ArrayStack) Size() int {
    return stack.size
}

// 栈是否为空
func (stack *ArrayStack) IsEmpty() bool {
    return stack.size == 0
}
O(1)

2.5.示例

func main() {
    arrayStack := new(ArrayStack)
    arrayStack.Push("cat")
    arrayStack.Push("dog")
    arrayStack.Push("hen")
    fmt.Println("size:", arrayStack.Size())
    fmt.Println("pop:", arrayStack.Pop())
    fmt.Println("pop:", arrayStack.Pop())
    fmt.Println("size:", arrayStack.Size())
    arrayStack.Push("drag")
    fmt.Println("pop:", arrayStack.Pop())
}

输出:

size: 3
pop: hen
pop: dog
size: 1
pop: drag

三、实现链表栈 LinkStack

链表形式的下压栈,后进先出:

// 链表栈,后进先出
type LinkStack struct {
    root *LinkNode  // 链表起点
    size int        // 栈的元素数量
    lock sync.Mutex // 为了并发安全使用的锁
}

// 链表节点
type LinkNode struct {
    Next  *LinkNode
    Value string
}

我们来分析它的各操作。

3.1.入栈

// 入栈
func (stack *LinkStack) Push(v string) {
    stack.lock.Lock()
    defer stack.lock.Unlock()

    // 如果栈顶为空,那么增加节点
    if stack.root == nil {
        stack.root = new(LinkNode)
        stack.root.Value = v
    } else {
        // 否则新元素插入链表的头部
        // 原来的链表
        preNode := stack.root

        // 新节点
        newNode := new(LinkNode)
        newNode.Value = v

        // 原来的链表链接到新元素后面
        newNode.Next = preNode

        // 将新节点放在头部
        stack.root = newNode
    }

    // 栈中元素数量+1
    stack.size = stack.size + 1
}

将元素入栈,会先加锁实现并发安全。

stack.root = new(LinkNode)
preNode := stack.rootnewNode := new(LinkNode)newNode.Next = preNodestack.root = newNode
O(1)

3.2.出栈

// 出栈
func (stack *LinkStack) Pop() string {
    stack.lock.Lock()
    defer stack.lock.Unlock()

    // 栈中元素已空
    if stack.size == 0 {
        panic("empty")
    }

    // 顶部元素要出栈
    topNode := stack.root
    v := topNode.Value

    // 将顶部元素的后继链接链上
    stack.root = topNode.Next

    // 栈中元素数量-1
    stack.size = stack.size - 1

    return v
}

元素出栈。如果栈大小为0,那么不允许出栈。

topNode := stack.rootstack.root = topNode.Next
O(1)

3.3.获取栈顶元素

// 获取栈顶元素
func (stack *LinkStack) Peek() string {
    // 栈中元素已空
    if stack.size == 0 {
        panic("empty")
    }

    // 顶部元素值
    v := stack.root.Value
    return v
}
O(1)

3.4.获取栈大小和判定是否为空

// 栈大小
func (stack *LinkStack) Size() int {
    return stack.size
}

// 栈是否为空
func (stack *LinkStack) IsEmpty() bool {
    return stack.size == 0
}

3.5.示例

func main() {
    linkStack := new(LinkStack)
    linkStack.Push("cat")
    linkStack.Push("dog")
    linkStack.Push("hen")
    fmt.Println("size:", linkStack.Size())
    fmt.Println("pop:", linkStack.Pop())
    fmt.Println("pop:", linkStack.Pop())
    fmt.Println("size:", linkStack.Size())
    linkStack.Push("drag")
    fmt.Println("pop:", linkStack.Pop())
}

输出:

size: 3
pop: hen
pop: dog
size: 1
pop: drag

四、实现数组队列 ArrayQueue

队列先进先出,和栈操作顺序相反,我们这里只实现入队,和出队操作,其他操作和栈一样。

// 数组队列,先进先出
type ArrayQueue struct {
    array []string   // 底层切片
    size  int        // 队列的元素数量
    lock  sync.Mutex // 为了并发安全使用的锁
}

4.1.入队

// 入队
func (queue *ArrayQueue) Add(v string) {
    queue.lock.Lock()
    defer queue.lock.Unlock()

    // 放入切片中,后进的元素放在数组最后面
    queue.array = append(queue.array, v)

    // 队中元素数量+1
    queue.size = queue.size + 1
}
O(n)

4.2.出队

// 出队
func (queue *ArrayQueue) Remove() string {
    queue.lock.Lock()
    defer queue.lock.Unlock()

    // 队中元素已空
    if queue.size == 0 {
        panic("empty")
    }

    // 队列最前面元素
    v := queue.array[0]

    /*    直接原位移动,但缩容后继的空间不会被释放
        for i := 1; i < queue.size; i++ {
            // 从第一位开始进行数据移动
            queue.array[i-1] = queue.array[i]
        }
        // 原数组缩容
        queue.array = queue.array[0 : queue.size-1]
    */

    // 创建新的数组,移动次数过多
    newArray := make([]string, queue.size-1, queue.size-1)
    for i := 1; i < queue.size; i++ {
        // 从老数组的第一位开始进行数据移动
        newArray[i-1] = queue.array[i]
    }
    queue.array = newArray

    // 队中元素数量-1
    queue.size = queue.size - 1
    return v
}

出队,把数组的第一个元素的值返回,并对数据进行空间挪位,挪位有两种:

queue.array[i-1] = queue.array[i]queue.array = queue.array[0 : queue.size-1]
O(n)

五、实现链表队列 LinkQueue

队列先进先出,和栈操作顺序相反,我们这里只实现入队,和出队操作,其他操作和栈一样。

// 链表队列,先进先出
type LinkQueue struct {
    root *LinkNode  // 链表起点
    size int        // 队列的元素数量
    lock sync.Mutex // 为了并发安全使用的锁
}

// 链表节点
type LinkNode struct {
    Next  *LinkNode
    Value string
}

5.1.入队

// 入队
func (queue *LinkQueue) Add(v string) {
    queue.lock.Lock()
    defer queue.lock.Unlock()

    // 如果栈顶为空,那么增加节点
    if queue.root == nil {
        queue.root = new(LinkNode)
        queue.root.Value = v
    } else {
        // 否则新元素插入链表的末尾
        // 新节点
        newNode := new(LinkNode)
        newNode.Value = v

        // 一直遍历到链表尾部
        nowNode := queue.root
        for nowNode.Next != nil {
            nowNode = nowNode.Next
        }

        // 新节点放在链表尾部
        nowNode.Next = newNode
    }

    // 队中元素数量+1
    queue.size = queue.size + 1
}
O(n)

5.2.出队

// 出队
func (queue *LinkQueue) Remove() string {
    queue.lock.Lock()
    defer queue.lock.Unlock()

    // 队中元素已空
    if queue.size == 0 {
        panic("empty")
    }

    // 顶部元素要出队
    topNode := queue.root
    v := topNode.Value

    // 将顶部元素的后继链接链上
    queue.root = topNode.Next

    // 队中元素数量-1
    queue.size = queue.size - 1

    return v
}
O(1)
系列文章入口

我是陈星星,欢迎阅读我亲自写的 数据结构和算法(Golang实现),文章首发于 阅读更友好的GitBook。