package main

import (
	"fmt"
	"github.com/cespare/xxhash/v2"
	"math/rand"
	"strconv"
	"sync"
	"time"
)

type Value struct {
	Mu    sync.Mutex
	Str   []string
	Count int
}

var (
	goCnt   uint64 = 10
	loopCnt uint64 = 1000000
	length         = goCnt * loopCnt
)

func GetHash(data []byte) uint64 {
	hash := xxhash.Sum64(data) % length
	return hash
}

func main() {
	RowMap := make([]Value, length)
	for k, _ := range RowMap {
		RowMap[k].Str = make([]string, 0)
	}
	v := GetHash([]byte("count"))
	val := &RowMap[v]
	val.Mu.Lock()

	val.Str = append(val.Str, "count")
	val.Mu.Unlock()

	var wg sync.WaitGroup
	start := time.Now()

	ranRange := int(length)
	rand.Seed(time.Now().UnixNano())
	var numOfThread uint64
	for numOfThread = 0; numOfThread < goCnt; numOfThread++ {
		wg.Add(1)
		go func() {
			defer wg.Done()
			var i uint64
			for i = 0; i < loopCnt; i++ {
				randomNum := rand.Intn(ranRange)
				keyStr := strconv.Itoa(randomNum)
				hash := GetHash([]byte(keyStr))
				valEntry := &RowMap[hash]
				valEntry.Mu.Lock()
				if len(valEntry.Str) == 0 {
					valEntry.Str = append(valEntry.Str, keyStr)
				} else {
					exist := false
					for _, v := range valEntry.Str {
						if v == keyStr {
							exist = true
							continue
						}
					}
					if !exist {
						valEntry.Str = append(valEntry.Str, keyStr)
					}
				}
				valEntry.Mu.Unlock()

				randomNum = rand.Intn(ranRange)
				keyStr = strconv.Itoa(randomNum)
				hash = GetHash([]byte(keyStr))
				valEntry = &RowMap[hash]
				valEntry.Mu.Lock()
				//for _, v := range valEntry.Str {
				//	fmt.Println("key : ", v)
				//}
				valEntry.Count++
				valEntry.Mu.Unlock()
			}
		}()
	}
	wg.Wait()

	t := time.Now()
	elapsed := t.Sub(start)
	fmt.Println("row map elapsed :", elapsed)

	//for _, v := range RowMap {
	//	fmt.Println("key :", v.Str, ", val count :", v.Count)
	//}
}

使用切片实现哈希表,每个哈希表桶拥有一个sync.Mutex。这样,每次操作哈希表时,针对是某个桶的锁。这时,锁的粒度会比sync.Map小。测试结果为:

 

 

 

 与sync map与free cache性能对比二者相比,结果与freecache性能接近。缺陷:目前没有实现自动扩容rehash过程。