摘要: 本文将深入和大家探讨微服务架构下,分布式事务的各种解决方案,并重点为大家解读阿里巴巴提出的分布式事务解决方案----GTS。该方案中提到的GTS是全新一代解决微服务问题的分布式事务互联网中间件。 **原文地址:https://yq.aliyun.com/articles/542020** **1 微服务的发展** 微服务倡导将复杂的单体应用拆分为若干个功能简单、松耦合的服务,这样可以降低开发难度、增强扩展性、便于敏捷开发。当前被越来越多的开发者推崇,很多互联网行业巨头、开源社区等都开始了微服务的讨论和实践。Hailo有160个不同服务构成,NetFlix有大约600个服务。国内方面,阿里巴巴、[腾讯](http://www.sohu.com/a/203351190_468650?spm=a2c4e.11153959.blogcont542020.13.589066ba2H5B6e)、[360](http://blog.csdn.net/lambert310/article/details/78084859?spm=a2c4e.11153959.blogcont542020.14.589066ba8cLOoE)、京东、58同城等很多互联网公司都进行了微服务化实践。当前微服务的开发框架也非常多,比较著名的有[Dubbo](http://dubbo.io/?spm=a2c4e.11153959.blogcont542020.15.589066baaYLfNr)、[SpringCloud](https://springcloud.cc/?spm=a2c4e.11153959.blogcont542020.16.589066ba2G9D9d)、[thrift](http://thrift.apache.org/?spm=a2c4e.11153959.blogcont542020.17.589066bamcgs6o) 、[grpc](http://doc.oschina.net/grpc?spm=a2c4e.11153959.blogcont542020.18.589066baQmX3sG&t=57966)等。 **2 微服务落地存在的问题** 虽然微服务现在如火如荼,但对其实践其实仍处于探索阶段。很多中小型互联网公司,鉴于经验、技术实力等问题,微服务落地比较困难。如著名架构师Chris Richardson所言,目前存在的主要困难有如下几方面: 1)单体应用拆分为分布式系统后,进程间的通讯机制和故障处理措施变的更加复杂。 2)系统微服务化后,一个看似简单的功能,内部可能需要调用多个服务并操作多个数据库实现,服务调用的分布式事务问题变的非常突出。 3)微服务数量众多,其测试、部署、监控等都变的更加困难。 随着RPC框架的成熟,第一个问题已经逐渐得到解决。例如dubbo可以支持多种通讯协议,springcloud可以非常好的支持restful调用。对于第三个问题,随着docker、devops技术的发展以及各公有云paas平台自动化运维工具的推出,微服务的测试、部署与运维会变得越来越容易。 而对于第二个问题,现在还没有通用方案很好的解决微服务产生的事务问题。分布式事务已经成为微服务落地最大的阻碍,也是最具挑战性的一个[技术难题](http://tech.huanqiu.com/news/2017-04/10451235.html?spm=a2c4e.11153959.blogcont542020.19.589066baXHWed1)。 为此,本文将深入和大家探讨微服务架构下,分布式事务的各种解决方案,并重点为大家解读阿里巴巴提出的分布式事务解决方案----GTS。该方案中提到的GTS是全新一代解决微服务问题的分布式事务互联网中间件。 **3 传统分布式事务解决方案** **3.1 基于XA协议的两阶段提交方案** 交易中间件与数据库通过 XA 接口规范,使用两阶段提交来完成一个全局事务, XA 规范的基础是两阶段提交协议。 第一阶段是表决阶段,所有参与者都将本事务能否成功的信息反馈发给协调者;第二阶段是执行阶段,协调者根据所有参与者的反馈,通知所有参与者,步调一致地在所有分支上提交或者回滚。 ![图片描述](http://img.blog.csdn.net/20180316105214565?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVucWlpbnNpZ2h0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast) 两阶段提交方案应用非常广泛,几乎所有商业OLTP数据库都支持XA协议。但是两阶段提交方案锁定资源时间长,对性能影响很大,基本不适合解决微服务事务问题。 **3.2 TCC方案** [TCC方案](https://wenku.baidu.com/view/be946bec0975f46527d3e104.html?spm=a2c4e.11153959.blogcont542020.20.589066baFNfKdC)在电商、金融领域落地较多。TCC方案其实是两阶段提交的一种改进。其将整个业务逻辑的每个分支显式的分成了Try、Confirm、Cancel三个操作。Try部分完成业务的准备工作,confirm部分完成业务的提交,cancel部分完成事务的回滚。基本原理如下图所示。 ![图片描述](http://img.blog.csdn.net/20180316105324572?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVucWlpbnNpZ2h0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast) 事务开始时,业务应用会向事务协调器注册启动事务。之后业务应用会调用所有服务的try接口,完成一阶段准备。之后事务协调器会根据try接口返回情况,决定调用confirm接口或者cancel接口。如果接口调用失败,会进行重试。 TCC方案让应用自己定义数据库操作的粒度,使得降低锁冲突、提高吞吐量成为可能。 当然TCC方案也有不足之处,集中表现在以下两个方面: 对应用的侵入性强。业务逻辑的每个分支都需要实现try、confirm、cancel三个操作,应用侵入性较强,改造成本高。 实现难度较大。需要按照网络状态、系统故障等不同的失败原因实现不同的回滚策略。为了满足一致性的要求,confirm和cancel接口必须实现幂等。 上述原因导致TCC方案大多被研发实力较强、有迫切需求的大公司所采用。微服务倡导服务的轻量化、易部署,而TCC方案中很多事务的处理逻辑需要应用自己编码实现,复杂且开发量大。 **3.3 基于消息的最终一致性方案** 消息一致性方案是通过消息中间件保证上、下游应用数据操作的[一致性](https://segmentfault.com/a/1190000011479826?spm=a2c4e.11153959.blogcont542020.21.589066bard2U9d)。基本思路是将本地操作和发送消息放在一个事务中,保证本地操作和消息发送要么两者都成功或者都失败。下游应用向消息系统订阅该消息,收到消息后执行相应操作。 ![图片描述](http://img.blog.csdn.net/20180316105425651?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVucWlpbnNpZ2h0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast) 消息方案从本质上讲是将分布式事务转换为两个本地事务,然后依靠下游业务的重试机制达到最终一致性。基于消息的最终一致性方案对应用侵入性也很高,应用需要进行大量业务改造,成本较高。 **4 GTS--分布式事务解决方案** [GTS是一款分布式事务中间件](https://www.aliyun.com/aliware/txc?spm=a2c4e.11153959.blogcont542020.22.589066baa8wv3r),由阿里巴巴中间件部门研发,可以为微服务架构中的分布式事务提供一站式解决方案。 更多GTS资料请访问[研发团队微博](https://weibo.com/jiangyu666?spm=a2c4e.11153959.blogcont542020.23.589066baaVYunK)。 **4.1 GTS的核心优势** **性能超强** GTS通过大量创新,解决了事务ACID特性与高性能、高可用、低侵入不可兼得的问题。单事务分支的平均响应时间在2ms左右,3台服务器组成的集群可以支撑3万TPS以上的分布式事务请求。 **应用侵入性极低** GTS对业务低侵入,业务代码最少只需要添加一行注解(@TxcTransaction)声明事务即可。业务与事务分离,将微服务从事务中解放出来,微服务关注于业务本身,不再需要考虑反向接口、幂等、回滚策略等复杂问题,极大降低了微服务开发的难度与工作量。 **完整解决方案** GTS支持多种主流的服务框架,包括EDAS,Dubbo,Spring Cloud等。 有些情况下,应用需要调用第三方系统的接口,而第三方系统没有接入GTS。此时需要用到GTS的MT模式。GTS的MT模式可以等价于TCC模式,用户可以根据自身业务需求自定义每个事务阶段的具体行为。MT模式提供了更多的灵活性,可能性,以达到特殊场景下的自定义优化及特殊功能的实现。 **容错能力强** GTS解决了XA事务协调器单点问题,实现真正的高可用,可以保证各种异常情况下的严格数据一致。 **4.2 GTS的应用场景** GTS可应用在涉及服务调用的多个领域,包括但不限于金融支付、电信、电子商务、快递物流、广告营销、社交、即时通信、手游、视频、物联网、车联网等,详细介绍可以阅读 《[GTS--阿里巴巴分布式事务全新解决方案](https://www.jianshu.com/u/c9668ae2b661?spm=a2c4e.11153959.blogcont542020.24.589066baCrDEJg)》一文。 **4.3 GTS与微服务的集成** GTS包括客户端(GTS Client)、资源管理器(GTS RM)和事务协调器(GTS Server)三个部分。GTS Client主要用来界定事务边界,完成事务的发起与结束。GTS RM完成事务分支的创建、提交、回滚等操作。GTS Server主要负责分布式事务的整体推进,事务生命周期的管理。GTS和微服务集成的结构图如下所示,GTS Client需要和业务应用集成部署,RM与微服务集成部署。 ![图片描述](http://img.blog.csdn.net/20180316105631736?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVucWlpbnNpZ2h0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast) **4.4 GTS的输出形式** GTS目前有三种输出形式:公有云输出、公网输出、专有云输出。 **4.4.1 公有云输出** 这种输出形式面向阿里云用户。如果用户的业务系统已经部署到阿里云上,可以申请开通公有云GTS。开通后业务应用即可通过GTS保证服务调用的一致性。这种使用场景下,业务系统和GTS间的网络环境比较理想,达到很好性能。 ![图片描述](http://img.blog.csdn.net/20180316105722967?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVucWlpbnNpZ2h0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast) **4.4.2 公网输出** 这种输出形式面向于非阿里云的用户,使用更加方便、灵活,业务系统只要能连接互联网即可享受GTS提供的云服务(与公有云输出的差别在于客户端部署于用户本地,而不在云上)。 在正常网络环境下,以包含两个本地事务的全局事务为例,事务完成时间在20ms左右,50个并发就可以轻松实现1000TPS以上分布式事务,对绝大多数业务来说性能是足够的。在公网环境,网络闪断很难完全避免,这种情况下GTS仍能保证服务调用的数据一致性。 ![图片描述](http://img.blog.csdn.net/20180316105801215?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVucWlpbnNpZ2h0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast) 具体使用样例使用参见4.7节GTS的工程样例。 **4.4.3 专有云输出** 这种形式主要面向于已建设了自己专有云平台的大用户,GTS可以直接部署到用户的专有云上,为专有云提供分布式事务服务。目前已经有10多个特大型企业的专有云使用GTS解决分布式事务难题,性能与稳定性经过了用户的严格检测。 **4.5 [GTS的使用方式](https://help.aliyun.com/document_detail/53298.html?spm=a2c4e.11153959.blogcont542020.25.589066baQ5toGY)** GTS对应用的侵入性非常低,使用也很简单。下面以订单存储应用为例说明。订单业务应用通过调用订单服务和库存服务完成订单业务,服务开发框架为Dubbo。 **4.5.1 订单业务应用** 在业务函数外围使用@TxcTransaction注解即可开启分布式事务。Dubbo应用通过隐藏参数将GTS的事务xid传播到服务端。 ``` @TxcTransaction(timeout = 1000 * 10) public void Bussiness(OrderService orderService, StockService stockService, String userId) { ``` ``` //获取事务上下文 String xid = TxcContext.getCurrentXid(); //通过RpcContext将xid传到一个服务端 RpcContext.getContext().setAttachment("xid", xid); //执行自己的业务逻辑 int productId = new Random().nextInt(100); int productNum = new Random().nextInt(100); OrderDO orderDO = new OrderDO(userId, productId, productNum, new Timestamp(new Date().getTime())); orderService.createOrder(orderDO); //通过RpcContext将xid传到另一个服务端 RpcContext.getContext().setAttachment("xid",xid); stockService.updateStock(orderDO); } ``` **4.5.2 服务提供者** 更新库存方法 ``` public int updateStock(OrderDO orderDO) { //获取全局事务ID,并绑定到上下文 String xid = RpcContext.getContext().getAttachment("xid"); TxcContext.bind(xid,null); //执行自己的业务逻辑 int ret = jdbcTemplate.update("update stock set amount = amount - ? where product_id = ?",new Object[]{orderDO.getNumber(), orderDO.getProductId()}); TxcContext.unbind(); return ret; } ``` **4.6 GTS的应用情况** GTS目前已经在淘宝、天猫、阿里影业、淘票票、阿里妈妈、1688等阿里各业务系统广泛使用,经受了16年和17年两年双十一海量请求的考验。某线上业务系统最高流量已达十万TPS(每秒钟10万笔事务)。 GTS在公有云和专有云输出后,已经有了100多个线上用户,很多用户通过GTS解决SpringCloud、Dubbo、Edas等服务框架的分布式事务问题。业务领域涉及电力、物流、ETC、烟草、金融、零售、电商、共享出行等十几个行业,得到[用户的一致认可](https://www.aliyun.com/aliware/hotproducts/gtscase1?spm=a2c4e.11153959.blogcont542020.26.589066ba1F3aWY&open_id=42e50fd2-3b02-4d91-9468-4c785adaaff4-53709576&open_cid=17680)。 ``` ![](https://img.alicdn.com/tfs/TB1QpqNdFGWBuNjy0FbXXb4sXXa-1530-1140.png) ``` 上图是GTS与SpringCloud集成,应用于某共享出行系统。业务共享出行场景下,通过GTS支撑物联网系统、订单系统、支付系统、运维系统、分析系统等系各统应用的数据一致性,保证海量订单和数千万流水的交易。 **4.7 GTS的工程样例** GTS的公有云样例可参考阿里云网站。在公网环境下提供sample-txc-simple和sample-txc-dubbo两个样例工程。 **4.7.1 sample-txc-simple样例** **4.7.1.1 样例业务逻辑** 该样例是GTS的入门sample,案例的业务逻辑是从A账户转账给B账户,其中A和B分别位于两个MySQL数据库中,使用GTS事务保证A和B账户钱的总数始终不变。 **4.7.1.2 样例搭建方法** 1) 准备数据库环境 安装MySQL,创建两个数据库db1和db2。在db1和db2中分别创建txc_undo_log表(SQL脚本见4.7.3)。在db1库中创建user_money_a表,在db2库中创建user_money_b表。 2) 下载样例 将sample-txc-simple文件下载到本地,样例中已经包含了GTS的SDK。 3) 修改配置 打开sample-txc-simple/src/main/resources目录下的txc-client-context.xml,将数据源的url、username、password修改为实际值。 4) 运行样例 在sample-txc-simple目录下执行build.sh编译本工程。编译完成后执行run.sh。 **4.7.2 sample-txc-dubbo 样例** **4.7.2.1 样例业务逻辑** 本案例模拟了用户下订单、减库存的业务逻辑。客户端(Client)通过调用订单服务(OrderService)创建订单,之后通过调用库存服务(StockService)扣库存。其中订单服务读写订单数据库,库存服务读写库存数据库。由 GTS 保证跨服务事务的一致性。 **4.7.2.2 样例搭建方法** 1) 准备数据库环境 安装MySQL,创建两个数据库db1和db2。在db1和db2中分别创建txc_undo_log表。在db1库中创建orders表,在db2库中创建stock表。 2) 下载样例 将样例文件sample-txc-dubbo下载到本地机器,样例中已经包含了GTS的SDK。 3) 修改配置 打开sample-txc-dubbo/src/main/resources目录,将dubbo-order-service.xml、dubbo-stock-service.xml两个文件中数据源的url、username、password修改为实际值。 4) 运行样例 编译程序 在工程根目录执行 build.sh 命令,编译工程。编译后会在 sample-txc-dubbo/client/bin 目录下生成 order_run.sh、stock_run.sh、client_run.sh 三个运行脚本对应订单服务、库存服务以及客户端。 运行程序 在根目录执行run.sh,该脚本会依次启动order_run.sh(订单服务)、stock_run.sh(库存服务)和client_run.sh(客户端程序)。 **4.7.2.3 其他说明** 样例使用Multicast注册中心的声明方式。如果本机使用无线网络,dubbo服务在绑定地址时有可能获取ipv6地址,可以通过jvm启动参数禁用。 方法是配置jvm启动参数 -Djava.net.preferIPv4Stack=true。 **4.7.3 SQL** **4.7.3.1 建表 txc_undo_log** CREATE TABLE txc_undo_log ( id bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键', gmt_create datetime NOT NULL COMMENT '创建时间', gmt_modified datetime NOT NULL COMMENT '修改时间', xid varchar(100) NOT NULL COMMENT '全局事务ID', branch_id bigint(20) NOT NULL COMMENT '分支事务ID', rollback_info longblob NOT NULL COMMENT 'LOG', status int(11) NOT NULL COMMENT '状态', server varchar(32) NOT NULL COMMENT '分支所在DB IP', PRIMARY KEY (id), KEY unionkey (xid,branch_id) ) ENGINE=InnoDB AUTO_INCREMENT=211225994 DEFAULT CHARSET=utf8 COMMENT='事务日志表'; **4.7.3.2 建表 user_money_a** CREATE TABLE user_money_a ( id int(11) NOT NULL AUTO_INCREMENT, money int(11) DEFAULT NULL, PRIMARY KEY (id) ) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8; **4.7.3.3 建表 user_money_b** CREATE TABLE user_money_b ( id int(11) NOT NULL AUTO_INCREMENT, money int(11) DEFAULT NULL, PRIMARY KEY (id) ) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8; **4.7.3.4 建表 orders** CREATE TABLE orders ( id bigint(20) NOT NULL AUTO_INCREMENT, user_id varchar(255) NOT NULL, product_id int(11) NOT NULL, number int(11) NOT NULL, gmt_create timestamp NOT NULL, PRIMARY KEY (id) ) ENGINE=MyISAM AUTO_INCREMENT=351 DEFAULT CHARSET=utf8 **4.7.3.5 建表 stock** CREATE TABLE stock ( product_id int(11) NOT NULL, price float NOT NULL, amount int(11) NOT NULL, PRIMARY KEY (product_id) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 **5 总结** GTS已经在阿里内部广泛使用,经过了双十一流量高峰的考验。内部成熟后,在专有云和公有云服务了很多用户,很多用户一天事务量在千万/亿级别,解决了业务服务化改造后的分布式事务棘手技术难题。 在整个世界范围内,既满足事务ACID特性,又具备高性能、高可用、业务侵入性低的分布式事务中间件在GTS前是不存在的。让我们一起体验GTS带来的巨大变革吧! **识别以下二维码,阅读更多干货** ![图片描述](http://img.blog.csdn.net/20180316110739950?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVucWlpbnNpZ2h0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)