Differential Privacy without Sensitivity

Bibtex Metadata Paper Reviews Supplemental

Authors

Kentaro Minami, HItomi Arai, Issei Sato, Hiroshi Nakagawa

Abstract

The exponential mechanism is a general method to construct a randomized estimator that satisfies $(\varepsilon, 0)$-differential privacy. Recently, Wang et al. showed that the Gibbs posterior, which is a data-dependent probability distribution that contains the Bayesian posterior, is essentially equivalent to the exponential mechanism under certain boundedness conditions on the loss function. While the exponential mechanism provides a way to build an $(\varepsilon, 0)$-differential private algorithm, it requires boundedness of the loss function, which is quite stringent for some learning problems. In this paper, we focus on $(\varepsilon, \delta)$-differential privacy of Gibbs posteriors with convex and Lipschitz loss functions. Our result extends the classical exponential mechanism, allowing the loss functions to have an unbounded sensitivity.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.

Do not remove: This comment is monitored to verify that the site is working properly