933c15679fe3c1d84632c6a7632a1371.png

提出疑问

在Go的源码库或者其他开源项目中,会发现有些函数在需要用到切片入参时,它采用是指向切片类型的指针,而非切片类型。这里未免会产生疑问:切片底层不就是指针指向底层数组数据吗,为何不直接传递切片,两者有什么区别

LoggerformatHeaderbuf*[]byte[]byte
func (l *Logger) formatHeader(buf *[]byte, t time.Time, file string, line int) {}

有以下例子

func modifySlice(innerSlice []string) {
    innerSlice[0] = "b"
    innerSlice[1] = "b"
    fmt.Println(innerSlice)
}

func main() {
    outerSlice := []string{"a", "a"}
    modifySlice(outerSlice)
    fmt.Print(outerSlice)
}

// 输出如下
[b b]
[b b]
modifySlice
func modifySlice(innerSlice *[]string) {
    (*innerSlice)[0] = "b"
    (*innerSlice)[1] = "b"
    fmt.Println(*innerSlice)
}

func main() {
    outerSlice := []string{"a", "a"}
    modifySlice(&outerSlice)
    fmt.Print(outerSlice)
}

// 输出如下
[b b]
[b b]

很好,在上面的例子中,两种函数传参类型得到的结果都一样,似乎没发现有什么区别。通过指针传递它看起来毫无用处,而且无论如何切片都是通过引用传递的,在两种情况下切片内容都得到了修改。

这印证了我们一贯的认知:函数内对切片的修改,将会影响到函数外的切片。但,真的是如此吗?

考证与解释

在《你真的懂string与[]byte的转换了吗》一文中,我们讲过切片的底层结构如下所示。

type slice struct {
    array unsafe.Pointer
    len   int
    cap   int
}
arraylencap

我们对上文中的例子,做以下细微的改动。

func modifySlice(innerSlice []string) {
    innerSlice = append(innerSlice, "a")
    innerSlice[0] = "b"
    innerSlice[1] = "b"
    fmt.Println(innerSlice)
}

func main() {
    outerSlice := []string{"a", "a"}
    modifySlice(outerSlice)
    fmt.Print(outerSlice)
}

// 输出如下
[b b a]
[a a]

神奇的事情发生了,函数内对切片的修改竟然没能对外部切片造成影响?

为了清晰地明白发生了什么,将打印添加更多细节。

func modifySlice(innerSlice []string) {
    fmt.Printf("%p %v   %pn", &innerSlice, innerSlice, &innerSlice[0])
    innerSlice = append(innerSlice, "a")
    innerSlice[0] = "b"
    innerSlice[1] = "b"
    fmt.Printf("%p %v %pn", &innerSlice, innerSlice, &innerSlice[0])
}

func main() {
    outerSlice := []string{"a", "a"}
    fmt.Printf("%p %v   %pn", &outerSlice, outerSlice, &outerSlice[0])
    modifySlice(outerSlice)
    fmt.Printf("%p %v   %pn", &outerSlice, outerSlice, &outerSlice[0])
}

// 输出如下
0xc00000c060 [a a]   0xc00000c080
0xc00000c0c0 [a a]   0xc00000c080
0xc00000c0c0 [b b a] 0xc000022080
0xc00000c060 [a a]   0xc00000c080
slicesliceslicearrayslicearray

但是存在这样的问题:如果指向底层数组的指针被覆盖或者修改(copy、重分配、append触发扩容),此时函数内部对数据的修改将不再影响到外部的切片,代表长度的len和容量cap也均不会被修改。

为了让读者更清晰的认识到这一点,将上述过程可视化如下。

dfb8993e05a7ad28949a2c0e911a1b88.png
4e07f3ac1d082c94a6ae231886bb3daa.png
30a403343f37364f39450937a41712b6.png
003dbce9e506b6268be62f2899359693.png

可以看到,当切片的长度和容量相等时,发生append,就会触发切片的扩容。扩容时,会新建一个底层数组,将原有数组中的数据拷贝至新数组,追加的数据也会被置于新数组中。切片的array指针指向新底层数组。所以,函数内切片与函数外切片的关联已经彻底斩断,它的改变对函数外切片已经没有任何影响了。

src/runtime/slice.gogrowslice

切片扩容时,当需要的容量超过原切片容量的两倍时,会直接使用需要的容量作为新容量。否则,当原切片长度小于1024时,新切片的容量会直接翻倍。而当原切片的容量大于等于1024时,会反复地增加25%,直到新容量超过所需要的容量。

到此,我们终于知道为什么有些函数在用到切片入参时,它需要采用指向切片类型的指针,而非切片类型。

func modifySlice(innerSlice *[]string) {
    *innerSlice = append(*innerSlice, "a")
    (*innerSlice)[0] = "b"
    (*innerSlice)[1] = "b"
    fmt.Println(*innerSlice)
}

func main() {
    outerSlice := []string{"a", "a"}
    modifySlice(&outerSlice)
    fmt.Print(outerSlice)
}

// 输出如下
[b b a]
[b b a]

请记住,如果你只想修改切片中元素的值,而不会更改切片的容量与指向,则可以按值传递切片,否则你应该考虑按指针传递。

例题巩固

为了判断读者是否已经真正理解上述问题,我将上面的例子做了两个变体,读者朋友们可以自测。

测试一

func modifySlice(innerSlice []string) {
    innerSlice[0] = "b"
  innerSlice = append(innerSlice, "a")
    innerSlice[1] = "b"
    fmt.Println(innerSlice)
}

func main() {
    outerSlice := []string{"a", "a"}
    modifySlice(outerSlice)
    fmt.Println(outerSlice)
}

测试二

func modifySlice(innerSlice []string) {
    innerSlice = append(innerSlice, "a")
    innerSlice[0] = "b"
    innerSlice[1] = "b"
    fmt.Println(innerSlice)
}

func main() {
    outerSlice:= make([]string, 0, 3)
    outerSlice = append(outerSlice, "a", "a")
    modifySlice(outerSlice)
    fmt.Println(outerSlice)
}

测试一答案

[b b a]
[b a]

测试二答案

[b b a]
[b b]

你做对了吗?