1、概述
1.1 基本概念
原子性:一个或多个操作在CPU的执行过程中不被中断的特性,称为原子性。这些操作对外表现成一个不可分割的整体,他们要么都执行,要么都不执行,外界不会看到他们只执行到一半的状态。
原子操作:进行过程中不能被中断的操作,原子操作由底层硬件支持,而锁则是由操作系统提供的API实现,若实现相同的功能,前者通常会更有效率
Golang 中的原子操作:sync/atomic包
能够进行原子操作的类型:int32, int64, uint32, uint64, uintptr, unsafe.Pointer
五种操作函数:增或减、比较并交换、载入、存储、交换
原子操作比锁更为高效。
1.2 原子操作 vs 锁
- 加锁比较耗时,需要上下文切换。即使是goroutine也需要上下文切换
- 只针对基本类型,可使用原子操作保证线程安全
- 原子操作在用户态完成,性能比互斥锁要高
- 原子操作步骤简单,不需要加锁-操作-解锁
1.3 五种操作
- 增或减 (Add)
- 比较并交换 (CAS, Compare & Swap)
- 载入 (Load)
- 存储 (Store)
- 交换 (Swap)
1.4 最小案例
package main import ( "sync" "fmt" ) var count int func add(wg *sync.WaitGroup) { defer wg.Done() count++ } func main() { wg := sync.WaitGroup{} wg.Add(1000) for i := 0; i < 1000; i++ { go add(&wg) } wg.Wait() fmt.Println(count) }
countcount++
countcount = count + 1count
因此就会出现多个goroutine读取到相同的数值,然后更新同样的数值到内存,导致最终结果比预期少。
2、sync/atomic包使用
return *addr
addr = val
*addr += delta return *addr
old = *addr *addr = new return old
if *addr == old { *addr = new return true } return false
// 修改方式1 func add(wg *sync.WaitGroup) { defer wg.Done() atomic.AddInt32(&count, 1) } // 修改方式2 func add(wg *sync.WaitGroup) { defer wg.Done() for { if atomic.CompareAndSwapInt32(&count, count, count+1) { break } } }