golang快速入门[9.2]-精深奥妙的切片功夫
前言
下面这段程序会输出什么?
package main
import "fmt"
func f(s []string, level int) {
if level > 5 {
return
}
s = append(s, fmt.Sprint(level))
f(s, level+1)
fmt.Println("level:", level, "slice:", s)
}
func main() {
f(nil, 0)
}
- 其输出为:
level: 5 slice: [0 1 2 3 4 5]
level: 4 slice: [0 1 2 3 4]
level: 3 slice: [0 1 2 3]
level: 2 slice: [0 1 2]
level: 1 slice: [0 1]
level: 0 slice: [0]
- 如果对输出结果有一些疑惑,你需要了解这篇文章的内容
- 如果你知道了结果,你仍然需要了解这篇文章的内容,因为本文完整介绍了
- 切片的典型用法
- 切片的陷阱
- 切片的逃逸分析
- 切片的扩容
- 切片在编译与运行时的研究
- 如果你啥都知道了,请直接滑动最下方,双击666.
切片基本操作
数组[]T
type SliceHeader struct {
Data uintptr
Len int
Cap int
}
- 指针指向第一个slice元素对应的底层数组元素的地址
- 长度对应slice中元素的数目;长度不能超过容量
- 容量一般是从slice的开始位置到底层数据的结尾位置的长度
切片的声明
//切片的声明1 //nil
var slice1 []int
//切片的声明2
var slice2 []int = make([]int,5)
var slice3 []int = make([]int,5,7)
numbers:= []int{1,2,3,4,5,6,7,8}
切片的截取
numbers:= []int{1,2,3,4,5,6,7,8}
//从下标1一直到下标4,但是不包括下标4
numbers1 :=numbers[1:4]
//从下标0一直到下标3,但是不包括下标3
numbers2 :=numbers[:3]
//从下标3一直到结束
numbers3 :=numbers[3:]
切片的长度与容量
- 内置的len和cap函数分别返回slice的长度和容量
slice6 := make([]int,0)
fmt.Printf("len=%d,cap=%d,slice=%v\n",len(slice4),cap(slice4),slice4)
切片与数组的拷贝对比
- 数组的拷贝是副本拷贝。对于副本的改变不会影响到原来的数组
- 但是,切片的拷贝很特殊,切片的拷贝只是对于运行时切片结构体的拷贝,切片的副本仍然指向了相同的数组。所以,对于副本的修改会影响到原来的切片。
- 下面用一个简单的例子来说明
//数组是值类型
a := [4]int{1, 2, 3, 4}
//切片是引用类型
b := []int{100, 200, 300}
c := a
d := b
c[1] = 200
d[0] = 1
//output: c[1 200 3 4] a[1 2 3 4]
fmt.Println("a=", a, "c=", c)
//output: d[1 200 300] b[1 200 300]
fmt.Println("b=", b, "d=", d)
切片追加元素:append
numbers := make([]int, 0, 20)
//append一个元素
numbers = append(numbers, 0)
//append多个元素
numbers = append(numbers, 1, 2, 3, 4, 5, 6, 7)
//append添加切片
s1 := []int{100, 200, 300, 400, 500, 600, 700}
numbers = append(numbers, s1...)
//now:[0 1 2 3 4 5 6 7 100 200 300 400 500 600 700]
经典案例: 切片删除
// 删除第一个元素
numbers = numbers[1:]
// 删除最后一个元素
numbers = numbers[:len(numbers)-1]
// 删除中间一个元素
a := int(len(numbers) / 2)
numbers = append(numbers[:a], numbers[a+1:]...)
经典案例:切片反转
// reverse reverses a slice of ints in place.
func reverse(s []int) {
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
s[i], s[j] = s[j], s[i]
}
}
切片在编译时的特性
- 编译时新建一个切片,切片内元素的类型是在编译期间确定的
func NewSlice(elem *Type) *Type {
if t := elem.Cache.slice; t != nil {
if t.Elem() != elem {
Fatalf("elem mismatch")
}
return t
}
t := New(TSLICE)
t.Extra = Slice{Elem: elem}
elem.Cache.slice = t
return t
}
- 切片的类型
// Slice contains Type fields specific to slice types.
type Slice struct {
Elem *Type // element type
}
编译时:字面量初始化
[3]int{1,2,3}
- 核心逻辑位于slicelit函数
// go/src/cmd/compile/internal/gc/sinit.go
func slicelit(ctxt initContext, n *Node, var_ *Node, init *Nodes)
其抽象的过程如下:
var vstat [3]int
vstat[0] = 1
vstat[1] = 2
vstat[2] = 3
var vauto *[3]int = new([3]int)
*vauto = vstat
slice := vauto[:]
- 源码中的注释如下:
// recipe for var = []t{...}
// 1. make a static array
// var vstat [...]t
// 2. assign (data statements) the constant part
// vstat = constpart{}
// 3. make an auto pointer to array and allocate heap to it
// var vauto *[...]t = new([...]t)
// 4. copy the static array to the auto array
// *vauto = vstat
// 5. for each dynamic part assign to the array
// vauto[i] = dynamic part
// 6. assign slice of allocated heap to var
// var = vauto[:]
编译时:make 初始化
make([]int,3,4)makeOMAKESLICE
func typecheck1(n *Node, top int) (res *Node) {
switch t.Etype {
case TSLICE:
if i >= len(args) {
yyerror("missing len argument to make(%v)", t)
n.Type = nil
return n
}
l = args[i]
i++
l = typecheck(l, ctxExpr)
var r *Node
if i < len(args) {
r = args[i]
i++
r = typecheck(r, ctxExpr)
}
if l.Type == nil || (r != nil && r.Type == nil) {
n.Type = nil
return n
}
if !checkmake(t, "len", l) || r != nil && !checkmake(t, "cap", r) {
n.Type = nil
return n
}
n.Left = l
n.Right = r
n.Op = OMAKESLICE
/usr/local/go/src/cmd/compile/internal/gcmake([]int64,1023)make([]int64,1024)
// maximum size of implicit variables that we will allocate on the stack.
// p := new(T) allocating T on the stack
// p := &T{} allocating T on the stack
// s := make([]T, n) allocating [n]T on the stack
// s := []byte("...") allocating [n]byte on the stack
// Note: the flag smallframes can update this value.
maxImplicitStackVarSize = int64(64 * 1024)
go/src/cmd/compile/internal/gc/walk.gon.Esc
func walkexpr(n *Node, init *Nodes) *Node{
case OMAKESLICE:
...
if n.Esc == EscNone {
// var arr [r]T
// n = arr[:l]
i := indexconst(r)
if i < 0 {
Fatalf("walkexpr: invalid index %v", r)
}
t = types.NewArray(t.Elem(), i) // [r]T
var_ := temp(t)
a := nod(OAS, var_, nil) // zero temp
a = typecheck(a, ctxStmt)
init.Append(a)
r := nod(OSLICE, var_, nil) // arr[:l]
r.SetSliceBounds(nil, l, nil)
r = conv(r, n.Type) // in case n.Type is named.
r = typecheck(r, ctxExpr)
r = walkexpr(r, init)
n = r
} else {
if t.Elem().NotInHeap() {
yyerror("%v is go:notinheap; heap allocation disallowed", t.Elem())
}
len, cap := l, r
fnname := "makeslice64"
argtype := types.Types[TINT64]
m := nod(OSLICEHEADER, nil, nil)
m.Type = t
fn := syslook(fnname)
m.Left = mkcall1(fn, types.Types[TUNSAFEPTR], init, typename(t.Elem()), conv(len, argtype), conv(cap, argtype))
m.Left.SetNonNil(true)
m.List.Set2(conv(len, types.Types[TINT]), conv(cap, types.Types[TINT]))
m = typecheck(m, ctxExpr)
m = walkexpr(m, init)
n = m
}
- 对上面代码具体分析,如果没有逃逸,分配在栈中。
- 抽象为:
arr := [r]T
ss := arr[:l]
类型大小 * 容量cap
// go/src/runtime/slice.go
func makeslice(et *_type, len, cap int) unsafe.Pointer {
mem, overflow := math.MulUintptr(et.size, uintptr(cap))
if overflow || mem > maxAlloc || len < 0 || len > cap {
// NOTE: Produce a 'len out of range' error instead of a
// 'cap out of range' error when someone does make([]T, bignumber).
// 'cap out of range' is true too, but since the cap is only being
// supplied implicitly, saying len is clearer.
// See golang.org/issue/4085.
mem, overflow := math.MulUintptr(et.size, uintptr(len))
if overflow || mem > maxAlloc || len < 0 {
panicmakeslicelen()
}
panicmakeslicecap()
}
return mallocgc(mem, et, true)
}
func makeslice64(et *_type, len64, cap64 int64) unsafe.Pointer {
len := int(len64)
if int64(len) != len64 {
panicmakeslicelen()
}
cap := int(cap64)
if int64(cap) != cap64 {
panicmakeslicecap()
}
return makeslice(et, len, cap)
}
切片的扩容
- Go 中切片append表示添加元素,但不是使用了append就需要扩容,如下代码不需要扩容
a:= make([]int,3,4)
append(a,1)
- 当Go 中切片append当容量超过了现有容量,才需要进行扩容,例如:
a:= make([]int,3,3)
append(a,1)
go/src/runtime/slice.go growslice函数
func growslice(et *_type, old slice, cap int) slice {
newcap := old.cap
doublecap := newcap + newcap
if cap > doublecap {
newcap = cap
} else {
if old.len < 1024 {
newcap = doublecap
} else {
for 0 < newcap && newcap < cap {
newcap += newcap / 4
}
if newcap <= 0 {
newcap = cap
}
}
}
...
}
- 上面的代码显示了扩容的核心逻辑,Go 中切片扩容的策略是这样的:
- 首先判断,如果新申请容量(cap)大于2倍的旧容量(old.cap),最终容量(newcap)就是新申请的容量(cap)
- 否则判断,如果旧切片的长度小于1024,则最终容量(newcap)就是旧容量(old.cap)的两倍,即(newcap=doublecap)
- 否则判断,如果旧切片长度大于等于1024,则最终容量(newcap)从旧容量(old.cap)开始循环增加原来的1/4,即(newcap=old.cap,for {newcap += newcap/4})直到最终容量(newcap)大于等于新申请的容量(cap),即(newcap >= cap)
- 如果最终容量(cap)计算值溢出,则最终容量(cap)就是新申请容量(cap)
et.size * newcap
switch {
case et.size == 1:
lenmem = uintptr(old.len)
newlenmem = uintptr(cap)
capmem = roundupsize(uintptr(newcap))
overflow = uintptr(newcap) > maxAlloc
newcap = int(capmem)
case et.size == sys.PtrSize:
lenmem = uintptr(old.len) * sys.PtrSize
newlenmem = uintptr(cap) * sys.PtrSize
capmem = roundupsize(uintptr(newcap) * sys.PtrSize)
overflow = uintptr(newcap) > maxAlloc/sys.PtrSize
newcap = int(capmem / sys.PtrSize)
case isPowerOfTwo(et.size):
var shift uintptr
if sys.PtrSize == 8 {
// Mask shift for better code generation.
shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
} else {
shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
}
lenmem = uintptr(old.len) << shift
newlenmem = uintptr(cap) << shift
capmem = roundupsize(uintptr(newcap) << shift)
overflow = uintptr(newcap) > (maxAlloc >> shift)
newcap = int(capmem >> shift)
default:
lenmem = uintptr(old.len) * et.size
newlenmem = uintptr(cap) * et.size
capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
capmem = roundupsize(capmem)
newcap = int(capmem / et.size)
}
et.ptrdata
if et.ptrdata == 0 {
p = mallocgc(capmem, nil, false)
// The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length).
// Only clear the part that will not be overwritten.
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
} else {
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
p = mallocgc(capmem, et, true)
if lenmem > 0 && writeBarrier.enabled {
// Only shade the pointers in old.array since we know the destination slice p
// only contains nil pointers because it has been cleared during alloc.
bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(old.array), lenmem)
}
}
memmove(p, old.array, lenmem)
return slice{p, old.len, newcap}
memmove(p, old.array, lenmem)
old = make([]int,3,3)
new = append(old,1) => new = malloc(newcap * sizeof(int)) a[4] = 0
new[1] = old[1]
new[2] = old[2]
new[3] = old[3]
- 当切片类型为指针,指针需要写入当前协程缓冲区中,这个地方涉及到GC 回收机制中的写屏障,后面介绍。
切片的截取
- 对于数组下标的截取,如下所示,可以从多个维度证明,切片的截取生成了一个新的切片,但是底层数据源却是使用的同一个。
old := make([]int64,3,3)
new := old[1:3]
fmt.Printf("%p %p",arr,slice)
输出为:
0xc000018140 0xc000018148
二者的地址正好相差了8个字节,这不是偶然的,而是因为二者指向了相同的数据源,刚好相差int64的大小。
另外我们也可以从生成的汇编的过程查看到到一些端倪
GOSSAFUNC=main GOOS=linux GOARCH=amd64 go tool compile main.go
startold := make([]int64,3,3)SliceMake <[]int> v10 v15 v15
new := old[1:3]SliceMake <[]int> v34 v28 v29
下面列出一张图比较形象的表示切片引用相同数据源的图:
切片的复制
copy
// 创建目标切片
numbers1 := make([]int, len(numbers), cap(numbers)*2)
// 将numbers的元素拷贝到numbers1中
count := copy(numbers1, numbers)
- 切片转数组
slice := []byte("abcdefgh")
var arr [4]byte
copy(arr[:], slice[:4])
//或者直接如下,这涉及到一个特性,即只会拷贝min(len(arr),len(slice)
copy(arr[:], slice)
memmove
func copyany(n *Node, init *Nodes, runtimecall bool) *Node {
...
if runtimecall {
if n.Right.Type.IsString() {
fn := syslook("slicestringcopy")
fn = substArgTypes(fn, n.Left.Type, n.Right.Type)
return mkcall1(fn, n.Type, init, n.Left, n.Right)
}
fn := syslook("slicecopy")
fn = substArgTypes(fn, n.Left.Type, n.Right.Type)
return mkcall1(fn, n.Type, init, n.Left, n.Right, nodintconst(n.Left.Type.Elem().Width))
}
...
fn := syslook("memmove")
fn = substArgTypes(fn, nl.Type.Elem(), nl.Type.Elem())
nwid := temp(types.Types[TUINTPTR])
setwid := nod(OAS, nwid, conv(nlen, types.Types[TUINTPTR]))
ne.Nbody.Append(setwid)
nwid = nod(OMUL, nwid, nodintconst(nl.Type.Elem().Width))
call := mkcall1(fn, nil, init, nto, nfrm, nwid)
}
- 抽象表示为:
init {
n := len(a)
if n > len(b) { n = len(b) }
if a.ptr != b.ptr { memmove(a.ptr, b.ptr, n*sizeof(elem(a))) }
}
go copy(numbers1, numbers)
case OCOPY:
n = copyany(n, init, instrumenting && !compiling_runtime)
case OGO:
switch n.Left.Op {
case OCOPY:
n.Left = copyany(n.Left, &n.Ninit, true)
memmove
func slicecopy(to, fm slice, width uintptr) int {
...
if raceenabled {
callerpc := getcallerpc()
pc := funcPC(slicecopy)
racewriterangepc(to.array, uintptr(n*int(width)), callerpc, pc)
racereadrangepc(fm.array, uintptr(n*int(width)), callerpc, pc)
}
if msanenabled {
msanwrite(to.array, uintptr(n*int(width)))
msanread(fm.array, uintptr(n*int(width)))
}
size := uintptr(n) * width
if size == 1 { // common case worth about 2x to do here
// TODO: is this still worth it with new memmove impl?
*(*byte)(to.array) = *(*byte)(fm.array) // known to be a byte pointer
} else {
memmove(to.array, fm.array, size)
}
return n
}
总结
copymakemakeslice
a = append(a,T)
前文
参考资料
喜欢本文的朋友欢迎点赞分享~
唯识相链启用微信交流群(Go与区块链技术)