某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学。在这里,我们区分开左倾红黑树和普通红黑树。
2-32-3-42-32-3-42-3-42-3
2-32-3
一、2-3 树
1.1. 2-3 树介绍
2-3John Edward Hopcroft3阶的B树BBalance
它不是一棵二叉树,是一棵三叉树。具有以下特征:
- 内部节点要么有1个数据元素和2个孩子,要么有2个数据元素和3个孩子,叶子节点没有孩子,但有1或2个数据元素。
- 所有叶子节点到根节点的长度一致。这个特征保证了完全平衡,非常完美的平衡。
- 每个节点的数据元素保持从小到大排序,两个数据元素之间的子树的所有值大小介于两个数据元素之间。
2-3
如图:
如果一个内部节点拥有一个数据元素、两个子节点,则此节点为2节点。如果一个内部节点拥有两个数据元素、三个子节点,则此节点为3节点。
可以说,所有平衡树的核心都在于插入和删除逻辑,我们主要分析这两个操作。
1.2. 2-3 树插入元素
在插入元素时,需要先找到插入的位置,使用二分查找从上自下查找树节点。
2-3
- 插入元素到一个2节点,直接插入即可,这样节点变成3节点。
- 插入元素到一个3节点,该3节点的父亲是一个2节点,先将节点变成临时的4节点,然后向上分裂调整一次。
- 插入元素到一个3节点,该3节点的父亲是一个3节点,先将节点变成临时的4节点,然后向上分裂调整,此时父亲节点变为临时4节点,继续向上分裂调整。
如图(来自维基百科):
核心在于插入3节点后,该节点变为临时4节点,然后进行分裂恢复树的特征。最坏情况为插入节点后,每一次分裂后都导致上一层变为临时4节点,直到树根节点,这样需要不断向上分裂。
临时4节点的分裂,细分有六种情况,如图:
2-3
2-3B树
1.3. 2-3 树删除元素
删除操作就复杂得多了,请耐心阅读理解。
2-32-32-3ABCBC2-3
基于上面的现实,我们来分析删除的不同情况,删除中间节点和叶子节点。
情况1:删除中间节点
删除的是非叶子节点,该节点一定是有两棵或者三棵子树的,那么从子树中找到其最小后继节点,该节点是叶子节点,用该节点替换被删除的非叶子节点,然后再删除这个叶子节点,进入情况2。
如何找到最小后继节点,当有两棵子树时,那么从右子树一直往左下方找,如果有三棵子树,被删除节点在左边,那么从中子树一直往左下方找,否则从右子树一直往左下方找。
情况2:删除叶子节点
2-3
2-3
- 重新分布:尝试从兄弟节点那里借值,然后重新调整节点。
- 合并:如果兄弟借不到值,合并节点(与父亲的元素),再向上递归处理。
看图说话:
如果被删除的叶子节点有兄弟是3节点,那么从兄弟那里借一个值填补被删除的叶子节点,然后兄弟和父亲重新分布调整位置。下面是重新分布的具体例子:
10080
如果兄弟们都是2节点呢,那么就合并节点:将父亲和兄弟节点合并,如果父亲是2节点,那么父亲就留空了,否则父亲就从3节点变成2节点,下面是合并的两个具体例子:
806090
70
但是,如果合并后,父亲节点变空了,也就是说有中间节点留空要怎么办,那么可以继续递归处理,如图:
中间节点是空的,那么可以继续从兄弟那里借节点或者和父亲合并,直到根节点,如果到达了根节点呢,如图:
递归到了根节点后,如果存在空的根节点,我们可以直接把该空节点删除即可,这时树的高度减少一层。
2-3B树
二、 左倾红黑树
2.1. 左倾红黑树介绍
2-3
其定义为:
- 根节点的链接是黑色的。
- 红链接均为左链接。
- 没有任何一个结点同时和两条红链接相连
- 任意一个节点到达叶子节点的所有路径,经过的黑链接数量相同,也就是该树是完美黑色平衡的。比如,某一个节点,它可以到达5个叶子节点,那么这5条路径上的黑链接数量一样。
2-3
2.2. 节点旋转和颜色转换
LLRBTreeLLRBTNode
LLRBTNodeValueTimes
ColorIsRed()
在元素添加和实现的过程中,需要做调整操作,有两种旋转操作,对某节点的右链接进行左旋转,或者左链接进行右旋转。
h
代码实现如下:
h
代码实现如下:
由于左倾红黑树不允许一个节点有两个红链接,所以需要做颜色转换,如图:
代码如下:
旋转和颜色转换作为局部调整,并不影响全局。
2.3. 添加元素实现
ColorRED
接着判断其父亲是否有两个红链接(如连续的两个左红链接或者左右红色链接),或者有右红色链接,进行颜色变换或旋转操作。
主要有以下这几种情况。
插入元素到2节点,直接让节点变为3节点,不过当右插入时需要左旋使得红色链接在左边,如图:
插入元素到3节点,需要做旋转和颜色转换操作,如图:
也就是说,在一个已经是红色左链接的节点,插入一个新节点的状态变化如下:
根据上述的演示图以及旋转,颜色转换等操作,添加元素的代码为:
2.4. 添加元素算法分析
可参考论文: Left-leaning Red-Black Trees。
2log(n)n2-32-3log(n)2-32-3
AVL1.44log(n)AVLAVLlog(n)
log(n)
我们可以优化代码,使得在某一层旋转变色后,如果其父层没有连续的左红链接或者不需要变色,那么可以直接退出,不需要逐层判断是否需要旋转和变色。
AVLlog(n)
AVLAVL
在此,我们不再纠结两种平衡树哪种更好,因为代码实现中,两种平衡树都需要自底向上的递归操作,效率差别不大。。
2.5. 删除元素实现
2-3
- 情况1:如果删除的是非叶子节点,找到其最小后驱节点,也就是在其右子树中一直向左找,找到的该叶子节点替换被删除的节点,然后删除该叶子节点,变成情况2。
- 情况2:如果删除的是叶子节点,如果它是红节点,也就是父亲指向它的链接为红色,那么直接删除即可。否则,我们需要进行调整,使它变为红节点,再删除。
2-3
我们创造两种操作,如果删除的节点在左子树中,可能需要进行红色左移,如果删除的节点在右子树中,可能需要进行红色右移。
我们介绍红色左移的步骤:
hhb,dh2-3
dehdhh2-3
红色左移可以总结为下图(被删除的节点在左子树,且进入的树根h一定为红节点):
代码如下:
hh
红色右移的步骤类似,如图(被删除的节点在右子树,且进入的树根h一定为红节点):
代码如下:
h
介绍完两种操作后,我们要明确一下到底是如何删除元素的。
2-32-3
树h树h树h
可以对照着大图,继续阅读下面的左倾红黑树删除元素代码:
tree.Find(value)
当根节点的左右子树都为黑节点时,那么先将根节点变为红节点,方便后面的红色左移或右移。
tree.Root = tree.Root.Delete(value)
核心的从子树中删除元素代码如下:
这段核心代码十分复杂,会用到红色左移和右移,当删除的元素小于根节点时,我们明白要在左子树中删除,如:
nowNode.Left = nowNode.Left.Delete(value)!IsRed(nowNode.Left) && !IsRed(nowNode.Left.Left)
如果删除的值不小于根节点,那么进入以下逻辑(可仔细阅读注释):
IsRed(nowNode.Left)nowNode = RotateRight(nowNode)
value == nowNode.Value && nowNode.Right == nil
!IsRed(nowNode.Right) && !IsRed(nowNode.Right.Left)
value == nowNode.Value
minNode := nowNode.Right.FindMinValue()nowNode.Right = nowNode.Right.DeleteMin()
nowNode.FixUp()
如果不是删除内部节点,依然是从右子树继续递归:
FixUp()
删除操作很难理解,可以多多思考,红色左移和右移不断地递归都是为了确保删除叶子节点时,其是一个3节点。
2-3树
完整代码见最下面。
2.6. 删除元素算法分析
log(n)
2.7. 查找元素等实现
查找最小值,最大值,或者某个值,代码如下:
查找操作逻辑与通用的二叉查找树一样,并无区别。
2.8. 验证是否是一棵左倾红黑树
如何确保我们的代码实现的就是一棵左倾红黑树呢,可以进行验证:
运行请看完整代码。
2.9. 完整程序
运行:
PS:我们的程序是递归程序,如果改写为非递归形式,效率和性能会更好,在此就不实现了,理解左倾红黑树添加和删除的总体思路即可。
三、应用场景
valuekey:value
Java 语言基础类库中的 HashMap,TreeSet,TreeMap 都有使用到,C++ 语言的 STL 标准模板库中,map 和 set 类也有使用到。很多中间件也有使用到,比如 Nginx,但 Golang 语言标准库并没有它。
最后,上述应用场景使用的红黑树都是普通红黑树,并不是本文所介绍的左倾红黑树。
左倾红黑树作为红黑树的一个变种,只是被设计为更容易理解而已,变种只能是变种,工程上使用得更多的还是普通红黑树,所以我们仍然需要学习普通的红黑树,请看下一章节。
系列文章入口
我是陈星星,欢迎阅读我亲自写的 数据结构和算法(Golang实现),文章首发于
目录 · 数据结构和算法(Golang实现)goa.lenggirl.com- 数据结构和算法(Golang实现)(1)简单入门Golang-前言
- 数据结构和算法(Golang实现)(2)简单入门Golang-包、变量和函数
- 数据结构和算法(Golang实现)(3)简单入门Golang-流程控制语句
- 数据结构和算法(Golang实现)(4)简单入门Golang-结构体和方法
- 数据结构和算法(Golang实现)(5)简单入门Golang-接口
- 数据结构和算法(Golang实现)(6)简单入门Golang-并发、协程和信道
- 数据结构和算法(Golang实现)(7)简单入门Golang-标准库
- 数据结构和算法(Golang实现)(8.1)基础知识-前言
- 数据结构和算法(Golang实现)(8.2)基础知识-分治法和递归
- 数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号
- 数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法
- 数据结构和算法(Golang实现)(11)常见数据结构-前言
- 数据结构和算法(Golang实现)(12)常见数据结构-链表
- 数据结构和算法(Golang实现)(13)常见数据结构-可变长数组
- 数据结构和算法(Golang实现)(14)常见数据结构-栈和队列
- 数据结构和算法(Golang实现)(15)常见数据结构-列表
- 数据结构和算法(Golang实现)(16)常见数据结构-字典
- 数据结构和算法(Golang实现)(17)常见数据结构-树
- 数据结构和算法(Golang实现)(18)排序算法-前言
- 数据结构和算法(Golang实现)(19)排序算法-冒泡排序
- 数据结构和算法(Golang实现)(20)排序算法-选择排序
- 数据结构和算法(Golang实现)(21)排序算法-插入排序
- 数据结构和算法(Golang实现)(22)排序算法-希尔排序
- 数据结构和算法(Golang实现)(23)排序算法-归并排序
- 数据结构和算法(Golang实现)(24)排序算法-优先队列及堆排序
- 数据结构和算法(Golang实现)(25)排序算法-快速排序
- 数据结构和算法(Golang实现)(26)查找算法-哈希表
- 数据结构和算法(Golang实现)(27)查找算法-二叉查找树
- 数据结构和算法(Golang实现)(28)查找算法-AVL树
- 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树
- 数据结构和算法(Golang实现)(30)查找算法-2-3-4树和普通红黑树