什么是协程栈

每个协程都需要有自己的栈空间,来存放变量,函数,寄存器等信息。所以系统需要给协程分配足够的栈空间。

栈分配方式

固定大小的栈

每个协程都有相同的,固定大小的栈。

优点:实现简单;

缺点:每个协程需要的栈空间不尽相同,如果一概而论,那么有些是浪费,有些是不够用。

创建时指定

由开发者在创建时指定协程栈大小。java, c++在创建线程时可以指定其栈大小。

优点:实现简单

缺点:对开发者要求比较高,需要根据栈变量,请求量预估。但是有些场景不太好预估,比如递归调用,这种情况通常只能往大的估计。

Segmented stacks

分配和释法额外的内存空间。初始分配的比较小的空间,如 4k。不够了再增加,用完即释放。以下是一个例子:

当 G 调用 H 的时候,没有足够的栈空间来让 H 运行,这时候 Go 运行环境就会从堆里分配一个新的栈内存块去让 H 运行。在 H 返回到 G 之前,新分配的内存块被释放回堆。这种管理栈的方法一般都工作得很好。但对有些代码,特别是递归调用,它会造成程序不停地分配和释放新的内存空间。举个例子,在一个程序里,函数 G 会在一个循环里调用很多次 H 函数。每次调用都会分配一块新的内存空间。这就是热分裂问题(hot split problem)。

优点:动态扩展,初始成本小,可以将协程当作廉价资源使用。

缺点:存在热分裂问题(hot split problem)。

Stack copying

动态扩展,分配更大的内存,做指针迁移。

优点:动态扩展,初始成本小,可以将协程当作廉价资源使用,且不存在 hot split problem 问题

缺点:由于通常以 2 倍扩展,当请求量密集,内存敏感的情况下,内存会消耗比较多,容易 oom,当然,通常的业务量是 ok 的,不会有任何问题。同时 100w 连接才要考虑优化。

golang 栈分配方式

1.3 之前采用的是 Segmented stacks 的方式。之后采用的 Stack copying,也叫 continuous stack (连续栈)

栈扩容

触发时机

运行时,发现栈不够用了

关键步骤

  1. 将状态从 _Grunning 更新至 _Gcopystack
  2. 计算出需要申请的数据大小
  3. copystack,进行栈复制,后面会详细分析
  4. 将协程状态恢复至_Grunning
  5. 走一遍协程调度

关键源码

func newstack() {
 thisg := getg()
 ......
 gp := thisg.m.curg
 ......
 // Allocate a bigger segment and move the stack.
 oldsize := gp.stack.hi - gp.stack.lo
 newsize := oldsize * 2 // 比原来大一倍
 ......
 // The goroutine must be executing in order to call newstack,
 // so it must be Grunning (or Gscanrunning).
 casgstatus(gp, _Grunning, _Gcopystack) //修改协程状态
 // The concurrent GC will not scan the stack while we are doing
 // the copy since the gp is in a Gcopystack status.
 copystack(gp, newsize, true) //在下面会讲到
 ......
 casgstatus(gp, _Gcopystack, _Grunning)
 gogo(&gp.sched)
}
复制代码
 
栈缩容

触发时机

gc 进行时,非运行中协程,栈使用不超过 1/4 的,会缩容为原来 1/2

关键步骤

  1. 检查协程状态,如果已经结束,则释放空间
  2. 确定新空间 size,目前为原来 1/2
  3. 检查栈使用是否超过 1/4,若没有,则放弃
  4. copystack,进行栈复制,后面会详细分析

关键源码

func shrinkstack(gp *g) {
 gstatus := readgstatus(gp)
 if gstatus&^_Gscan == _Gdead {
 if gp.stack.lo != 0 {
 // Free whole stack - it will get reallocated
 // if G is used again.
 stackfree(gp.stack)
 gp.stack.lo = 0
 gp.stack.hi = 0
 }
 return
 }
 ......
 oldsize := gp.stack.hi - gp.stack.lo
 newsize := oldsize / 2 // 比原来小1倍
 if newsize < _FixedStack {
 return
 }
 // Compute how much of the stack is currently in use and only
 // shrink the stack if gp is using less than a quarter of its
 // current stack. The currently used stack includes everything
 // down to the SP plus the stack guard space that ensures
 // there's room for nosplit functions.
 avail := gp.stack.hi - gp.stack.lo
 //当已使用的栈占不到总栈的1/4 进行缩容
 if used := gp.stack.hi - gp.sched.sp + _StackLimit; used >= avail/4 {
 return
 }
 copystack(gp, newsize, false) //在下面会讲到
}
复制代码
 

copystack 栈拷贝过程

原来内容上的拷贝

关键步骤

  1. 申请新的栈空间:new := stackalloc(uint32(newsize));
  2. 调整指针指向,将 sudog,ctx 等,指向新位置,计算方式为原地址+delta(delta 为 new.hi-old.hi);
  3. gentraceback,调整栈帧到新位置;
  4. memmove 老栈数据到新栈;
  5. 删除老栈。
func copystack(gp *g, newsize uintptr, sync bool) {
 ......
 old := gp.stack
 ......
 used := old.hi - gp.sched.sp
 // allocate new stack
 new := stackalloc(uint32(newsize))
 ......
 // Compute adjustment.
 var adjinfo adjustinfo
 adjinfo.old = old
 adjinfo.delta = new.hi - old.hi //用于旧栈指针的调整
 //后面有机会和 select / chan 一起分析
 // Adjust sudogs, synchronizing with channel ops if necessary.
 ncopy := used
 if sync {
 adjustsudogs(gp, &adjinfo)
 } else {
 ......
 adjinfo.sghi = findsghi(gp, old)
 // Synchronize with channel ops and copy the part of
 // the stack they may interact with.
 ncopy -= syncadjustsudogs(gp, used, &adjinfo)
 }
 //把旧栈数据复制到新栈
 // Copy the stack (or the rest of it) to the new location
 memmove(unsafe.Pointer(new.hi-ncopy), unsafe.Pointer(old.hi-ncopy), ncopy)
 // Adjust remaining structures that have pointers into stacks.
 // We have to do most of these before we traceback the new
 // stack because gentraceback uses them.
 adjustctxt(gp, &adjinfo)
 adjustdefers(gp, &adjinfo)
 adjustpanics(gp, &adjinfo)
 ......
 // Swap out old stack for new one
 gp.stack = new
 gp.stackguard0 = new.lo + _StackGuard // NOTE: might clobber a preempt request
 gp.sched.sp = new.hi - used
 gp.stktopsp += adjinfo.delta
 // Adjust pointers in the new stack.
 gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0,  nil , 0x7fffffff, adjustframe, noescape(unsafe.Pointer(&adjinfo)), 0)
 ......
 //释放旧栈
 stackfree(old)
}
复制代码
 

栈帧调整

golang 栈帧

package main
func myFunction(a, b int) (int, int) {
 return a + b, a - b
}
func main() {
 myFunction(66, 77)
}
 

栈帧调整

gentraceback 里回调了 adjustframe 函数,我们所需要了解的即 golang 的栈空间中,有存放函数参数,返回值,函数返回地址等信息,这些地址都需要调节,该函数就是针对原来的栈指针进行的调节。代码如下:

// Note: the argument/return area is adjusted by the callee.
func adjustframe(frame *stkframe, arg unsafe.Pointer) bool {
adjinfo := (*adjustinfo)(arg)
targetpc := frame.continpc
if targetpc == 0 {
// Frame is dead.
return true
}
f := frame.fn
 .........
pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, &adjinfo.cache)
if pcdata == -1 {
pcdata = 0 // in prologue
}
// Adjust local variables if stack frame has been allocated.
size := frame.varp - frame.sp
var minsize uintptr
switch sys.ArchFamily {
case sys.ARM64:
minsize = sys.SpAlign
default:
minsize = sys.MinFrameSize
}
if size > minsize {
var bv bitvector
stackmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
if stackmap == nil || stackmap.n <= 0 {
print(" runtime : frame ", funcname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n")
throw("missing stackmap")
}
// Locals bitmap information, scan just the pointers in locals.
if pcdata < 0 || pcdata >= stackmap.n {
print("runtime: pcdata is ", pcdata, " and ", stackmap.n, " locals stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
throw("bad symbol table")
}
bv = stackmapdata(stackmap, pcdata)
size = uintptr(bv.n) * sys.PtrSize
if stackDebug >= 3 {
print(" locals ", pcdata, "/", stackmap.n, " ", size/sys.PtrSize, " words ", bv.bytedata, "\n")
}
adjustpointers(unsafe.Pointer(frame.varp-size), &bv, adjinfo, f)
}
// Adjust saved base pointer if there is one.
if sys.ArchFamily == sys.AMD64 && frame.argp-frame.varp == 2*sys.RegSize {
if !framepointer_enabled {
print("runtime: found space for saved base pointer, but no framepointer experiment\n")
print("argp=", hex(frame.argp), " varp=", hex(frame.varp), "\n")
throw("bad frame layout")
}
if stackDebug >= 3 {
print(" saved  bp \n")
}
if debugCheckBP {
// Frame pointers should always point to the next higher frame on
// the Go stack (or be nil, for the top frame on the stack).
bp := *(*uintptr)(unsafe.Pointer(frame.varp))
if bp != 0 && (bp < adjinfo.old.lo || bp >= adjinfo.old.hi) {
println("runtime: found invalid frame pointer")
print("bp=", hex(bp), " min=", hex(adjinfo.old.lo), " max=", hex(adjinfo.old.hi), "\n")
throw("bad frame pointer")
}
}
adjustpointer(adjinfo, unsafe.Pointer(frame.varp))
}
// Adjust arguments.
if frame.arglen > 0 {
var bv bitvector
if frame.argmap != nil {
bv = *frame.argmap
} else {
stackmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
if stackmap == nil || stackmap.n <= 0 {
print("runtime: frame ", funcname(f), " untyped args ", frame.argp, "+", frame.arglen, "\n")
throw("missing stackmap")
}
if pcdata < 0 || pcdata >= stackmap.n {
print("runtime: pcdata is ", pcdata, " and ", stackmap.n, " args stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
throw("bad symbol table")
}
bv = stackmapdata(stackmap, pcdata)
}
if stackDebug >= 3 {
print("args\n")
}
adjustpointers(unsafe.Pointer(frame.argp), &bv, adjinfo, funcInfo{})
}
return true
}
 

原文链接:

喜欢本文的朋友,欢迎关注“Go语言中文网”: