前言
  1. sync.Pool的核心作用 - 读源码,缓存稍后会频繁使用的对象+减轻GC压力
  2. sync.Pool的Put与Get - Put的顺序为local private-> local shared,Get的顺序为 local private -> local shared -> remote shared ->victim -> New
  3. 思考sync.Pool应用的核心场景 - 高频使用且生命周期短的对象,且初始化始终一致,如fmt
  4. 探索Go1.13引入victim的作用 - 了解victim cache的机制
使用
package main

import (
	"fmt"
	"reflect"
	"sync"
)

func syncPool() {
	var sp = sync.Pool{
		// Tip: 声明对象池的New函数,这里以一个简单的int为例
		New: func() interface{} {
			return 100
		},
	}
	// Tip: 从对象池里获取一个对象
	data := sp.Get().(int)
	fmt.Println(data)
	// Tip: 往对象池里放回一个对象
	sp.Put(data)

	fmt.Println(reflect.ValueOf(sp))
}
源码

Get

//Get local private -> local shared -> remote shared ->victim -> New
func (p *Pool) Get() interface{} {
	x := l.private//先从local private拿
	l.private = nil
	if x == nil {
		x, _ = l.shared.popHead()//private没有的话从local shared拿
		if x == nil {
			x = p.getSlow(pid)//local没有就从remote shared拿,再没有就从victim拿,详情看下面函数代码
		}
	}
	if x == nil && p.New != nil {
		x = p.New()//都没有只能New一个了
	}
	return x
}
func (p *Pool) getSlow(pid int) interface{} {
	// See the comment in pin regarding ordering of the loads.
	size := runtime_LoadAcquintptr(&p.localSize) // load-acquire
	locals := p.local                            // load-consume
	//这里,从其他的process shared上面取
	// Try to steal one element from other procs.
	for i := 0; i < int(size); i++ {
		l := indexLocal(locals, (pid+i+1)%int(size))
		if x, _ := l.shared.popTail(); x != nil {
			return x
		}
	}
	// Try the victim cache. We do this after attempting to steal
	// from all primary caches because we want objects in the
	// victim cache to age out if at all possible.
	size = atomic.LoadUintptr(&p.victimSize)
	if uintptr(pid) >= size {
		return nil
	}
	locals = p.victim//没有的话从victim上拿
	return nil
}

Put

// Put adds x to the pool.
//local private-> local shared
func (p *Pool) Put(x interface{}) {
	if l.private == nil {
		l.private = x
		x = nil
	}
	if x != nil {
		l.shared.pushHead(x)
	}
}
理解

sync.pool

sync.pool是一个对象池,对象池的声明,核心是一个New
从对象池获取一个对象Get,把一个对象放入对象池Put
对象池的核心作用:缓存会频繁使用的对象,减轻GC压力
local对应的就是当前goroutine运行在GMP模型中的P,process
其他几个process就是remote
长生命周期没必要使用pool,思考GC相关的问题即可
New里面是没有任何传参的,如果想要每次New出来的东西都不一样的话,是不适合用pool的

victim

victim在poolCleanup的时候被赋值,而poolCLeanup在GC的时候被调用
先把victim和victimsize情空,再把local和localsize的数据全放过来,再把local和localsize的数据放过来

func poolCleanup() {
	// This function is called with the world stopped, at the beginning of a garbage collection.
	// It must not allocate and probably should not call any runtime functions.

	// Because the world is stopped, no pool user can be in a
	// pinned section (in effect, this has all Ps pinned).

	// Drop victim caches from all pools.
	for _, p := range oldPools {
		p.victim = nil
		p.victimSize = 0
	}

	// Move primary cache to victim cache.
	for _, p := range allPools {
		p.victim = p.local
		p.victimSize = p.localSize
		p.local = nil
		p.localSize = 0
	}

	// The pools with non-empty primary caches now have non-empty
	// victim caches and no pools have primary caches.
	oldPools, allPools = allPools, nil
}

在getslow的时候,victim被使用,locals=p.victim,综合来看victim地位相当于是脏数据,使用的频率是不会太高的,
引用这个victim给sync.pool带来了怎样的提升呢?最关键的还是在减轻GC的压力,本来是直接清空local,现在只需要把先移到victim上,对victim再慢慢操作,减少GC带来的抖动这些问题

好文共赏