修改参数

假设你定义了一个函数,并在函数里对参数进行修改,想让调用者可以通过参数获取你最新修改的值。我仍然以前面课程用到的 person 结构体举例,如下所示:

func main() {

   p:=person{name: "张三",age: 18}

   modifyPerson(p)

   fmt.Println("person name:",p.name,",age:",p.age)

}

func modifyPerson(p person)  {

   p.name = "李四"

   p.age = 20

}

type person struct {

   name string

   age int

}

在这个示例中,我期望通过 modifyPerson 函数把参数 p 中的 name 修改为李四,把 age 修改为 20 。代码没有错误,但是运行一下,你会看到如下打印输出:

person name: 张三 ,age: 18

怎么还是张三与 18 呢?我换成指针参数试试,可以通过指针修改指向的对象数据,如下所示:

modifyPerson(&p)

func modifyPerson(p *person)  {

   p.name = "李四"

   p.age = 20

}

这些代码用于满足指针参数的修改,把接收的参数改为指针参数,以及在调用 modifyPerson 函数时,通过&取地址符传递一个指针。现在再运行程序,就可以看到期望的输出了,如下所示:

person name: 李四 ,age: 20

值类型

在上面的小节中,我定义的普通变量 p 是 person 类型的。在 Go 语言中,person 是一个值类型,而 &p 获取的指针是 *person 类型的,即指针类型。那么为什么值类型在参数传递中无法修改呢?这也要从内存讲起。

我们已经知道变量的值是存储在内存中的,而内存都有一个编号,称为内存地址所以要想修改内存中的数据,就要找到这个内存地址。现在,我来对比值类型变量在函数内外的内存地址,如下所示:

func main() {

   p:=person{name: "张三",age: 18}

   fmt.Printf("main函数:p的内存地址为%p\n",&p)

   modifyPerson(p)

   fmt.Println("person name:",p.name,",age:",p.age)

}

func modifyPerson(p person)  {

   fmt.Printf("modifyPerson函数:p的内存地址为%p\n",&p)

   p.name = "李四"

   p.age = 20

}

其中,我把原来的示例代码做了更改,分别打印出在 main 函数中变量 p 的内存地址,以及在 modifyPerson 函数中参数 p 的内存地址。运行以上程序,可以看到如下结果:

main函数:p的内存地址为0xc0000a6020

modifyPerson函数:p的内存地址为0xc0000a6040

person name: 张三 ,age: 18

你会发现它们的内存地址都不一样,这就意味着,在 modifyPerson 函数中修改的参数 p 和 main 函数中的变量 p 不是同一个,这也是我们在 modifyPerson 函数中修改参数 p,但是在 main 函数中打印后发现并没有修改的原因。

导致这种结果的原因是 Go 语言中的函数传参都是值传递。 值传递指的是传递原来数据的一份拷贝,而不是原来的数据本身。

                              (main 函数调用 modifyPerson 函数传参内存示意图)

以 modifyPerson 函数来说,在调用 modifyPerson 函数传递变量 p 的时候,Go 语言会拷贝一个 p 放在一个新的内存中,这样新的 p 的内存地址就和原来不一样了,但是里面的 name 和 age 是一样的,还是张三和 18。这就是副本的意思,变量里的数据一样,但是存放的内存地址不一样。

除了 struct 外,还有浮点型、整型、字符串、布尔、数组,这些都是值类型。

指针类型

指针类型的变量保存的值就是数据对应的内存地址,所以在函数参数传递是传值的原则下,拷贝的值也是内存地址。现在对以上示例稍做修改,修改后的代码如下:

func main() {

   p:=person{name: "张三",age: 18}

   fmt.Printf("main函数:p的内存地址为%p\n",&p)

   modifyPerson(&p)

   fmt.Println("person name:",p.name,",age:",p.age)

}

func modifyPerson(p *person)  {

   fmt.Printf("modifyPerson函数:p的内存地址为%p\n",p)

   p.name = "李四"

   p.age = 20

}

运行这个示例,你会发现打印出的内存地址一致,并且数据也被修改成功了,如下所示:

main函数:p的内存地址为0xc0000a6020

modifyPerson函数:p的内存地址为0xc0000a6020

person name: 李四 ,age: 20

所以指针类型的参数是永远可以修改原数据的,因为在参数传递时,传递的是内存地址。

小提示:值传递的是指针,也是内存地址。通过内存地址可以找到原数据的那块内存,所以修改它也就等于修改了原数据。

引用类型

下面要介绍的是引用类型,包括 map 和 chan。

map

对于上面的例子,假如我不使用自定义的 person 结构体和指针,能不能用 map 达到修改的目的呢?

下面我来试验一下,如下所示:

func main() {

   m:=make(map[string]int)

   m["飞雪无情"] = 18

   fmt.Println("飞雪无情的年龄为",m["飞雪无情"])

   modifyMap(m)

   fmt.Println("飞雪无情的年龄为",m["飞雪无情"])

}

func modifyMap(p map[string]int)  {

   p["飞雪无情"] =20

}

我定义了一个 map[string]int 类型的变量 m,存储一个 Key 为飞雪无情、Value 为 18 的键值对,然后把这个变量 m 传递给函数 modifyMap。modifyMap 函数所做的事情就是把对应的值修改为 20。现在运行这段代码,通过打印输出来看是否修改成功,结果如下所示:

飞雪无情的年龄为 18

飞雪无情的年龄为 20

确实修改成功了。你是不是有不少疑惑?没有使用指针,只是用了 map 类型的参数,按照 Go 语言值传递的原则,modifyMap 函数中的 map 是一个副本,怎么会修改成功呢?

要想解答这个问题,就要从 make 这个 Go 语言内建的函数说起。在 Go 语言中,任何创建 map 的代码(不管是字面量还是 make 函数)最终调用的都是 runtime.makemap 函数。

小提示:用字面量或者 make 函数的方式创建 map,并转换成 makemap 函数的调用,这个转换是 Go 语言编译器自动帮我们做的。

从下面的代码可以看到,makemap 函数返回的是一个 *hmap 类型,也就是说返回的是一个指针,所以我们创建的 map 其实就是一个 *hmap。

// makemap implements Go map creation for make(map[k]v, hint).

func makemap(t *maptype, hint int, h *hmap) *hmap{

  //省略无关代码

}

因为 Go 语言的 map 类型本质上就是 *hmap,所以根据替换的原则,我刚刚定义的 modifyMap(p map) 函数其实就是 modifyMap(p *hmap)。这是不是和上一小节讲的指针类型的参数调用一样了?这也是通过 map 类型的参数可以修改原始数据的原因,因为它本质上就是个指针。

为了进一步验证创建的 map 就是一个指针,我修改上述示例,打印 map 类型的变量和参数对应的内存地址,如下面的代码所示:

func main(){

  //省略其他没有修改的代码

  fmt.Printf("main函数:m的内存地址为%p\n",m)

}

func modifyMap(p map[string]int)  {

   fmt.Printf("modifyMap函数:p的内存地址为%p\n",p)

   //省略其他没有修改的代码

}

例子中的两句打印代码是新增的,其他代码没有修改,这里就不再贴出来了。运行修改后的程序,你可以看到如下输出:

飞雪无情的年龄为 18

main函数:m的内存地址为0xc000060180

modifyMap函数:p的内存地址为0xc000060180

飞雪无情的年龄为 20

从输出结果可以看到,它们的内存地址一模一样,所以才可以修改原始数据,得到年龄是 20 的结果。而且我在打印指针的时候,直接使用的是变量 m 和 p,并没有用到取地址符 &,这是因为它们本来就是指针,所以就没有必要再使用 & 取地址了。

所以在这里,Go 语言通过 make 函数或字面量的包装为我们省去了指针的操作,让我们可以更容易地使用 map。其实就是语法糖,这是编程界的老传统了。

注意:这里的 map 可以理解为引用类型,但是它本质上是个指针,只是可以叫作引用类型而已。在参数传递时,它还是值传递,并不是其他编程语言中所谓的引用传递。

chan

还记得我们在 Go 语言并发模块中学的 channel 吗?它也可以理解为引用类型,而它本质上也是个指针。

通过下面的源代码可以看到,所创建的 chan 其实是个 *hchan,所以它在参数传递中也和 map 一样。

func makechan(t *chantype, size int64) *hchan {

    //省略无关代码

}

严格来说,Go 语言没有引用类型,但是我们可以把 map、chan 称为引用类型,这样便于理解。除了 map、chan 之外,Go 语言中的函数、接口、slice 切片都可以称为引用类型。

小提示:指针类型也可以理解为是一种引用类型。