main()
在文件头部有一段对 的介绍,我们先了解一下。
goroutines
GMmachineP Go code
MP Go code
再往下会发现一段注释说明
// src/runtime/proc.go // The bootstrap sequence is: // // call osinit // call schedinit // make & queue new G // call runtime·mstart // // The new G calls runtime·main.
m0
M00M
osinit
runtime.osinit()
os_linux.goosinit
func osinit() { ncpu = getproccount() physHugePageSize = getHugePageSize() osArchInit() }
CPU数量页大小操作系统初始化
schedinit
调度器初始化, 调用的函数为。
func schedinit() { lockInit(&sched.lock, lockRankSched) lockInit(&sched.sysmonlock, lockRankSysmon) lockInit(&sched.deferlock, lockRankDefer) lockInit(&sched.sudoglock, lockRankSudog) lockInit(&deadlock, lockRankDeadlock) lockInit(&paniclk, lockRankPanic) lockInit(&allglock, lockRankAllg) lockInit(&allpLock, lockRankAllp) lockInit(&reflectOffs.lock, lockRankReflectOffs) lockInit(&finlock, lockRankFin) lockInit(&trace.bufLock, lockRankTraceBuf) lockInit(&trace.stringsLock, lockRankTraceStrings) lockInit(&trace.lock, lockRankTrace) lockInit(&cpuprof.lock, lockRankCpuprof) lockInit(&trace.stackTab.lock, lockRankTraceStackTab) ... }
全是与锁有关的函数,前四个是和调度器相关,接着两个与panic和deadlock相关。
lockInit(&allglock, lockRankAllg) lockInit(&allpLock, lockRankAllp) lockInit(&cpuprof.lock, lockRankCpuprof)
func schedinit() { ... // raceinit must be the first call to race detector. // In particular, it must be done before mallocinit below calls racemapshadow. _g_ := getg() if raceenabled { _g_.racectx, raceprocctx0 = raceinit() } sched.maxmcount = 10000 ... }
raceinit()m10000
func schedinit() { ... tracebackinit() moduledataverify() stackinit() mallocinit() fastrandinit() // must run before mcommoninit mcommoninit(_g_.m, -1) cpuinit() // must run before alginit alginit() // maps must not be used before this call modulesinit() // provides activeModules typelinksinit() // uses maps, activeModules itabsinit() // uses activeModules ... }
stackinit() mallocinit()mcommoninit()cpuinit()alginit()typelinksinit()modulesinit()itabsinit()
func schedinit() { ... sigsave(&_g_.m.sigmask) initSigmask = _g_.m.sigmask goargs() goenvs() parsedebugvars() gcinit() ... }
gcinit()
func schedinit() { ... sched.lastpoll = uint64(nanotime()) procs := ncpu if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 { procs = n } if procresize(procs) != nil { throw("unknown runnable goroutine during bootstrap") } ... }
sched.lastpollprocsosinit()
func schedinit() { ... // For cgocheck > 1, we turn on the write barrier at all times // and check all pointer writes. We can't do this until after // procresize because the write barrier needs a P. if debug.cgocheck > 1 { writeBarrier.cgo = true writeBarrier.enabled = true for _, p := range allp { p.wbBuf.reset() } } if buildVersion == "" { // Condition should never trigger. This code just serves // to ensure runtime·buildVersion is kept in the resulting binary. buildVersion = "unknown" } if len(modinfo) == 1 { // Condition should never trigger. This code just serves // to ensure runtime·modinfo is kept in the resulting binary. modinfo = "" } }
cgocheck 与cgo 相关,可能会与 writeBarrier 相关,建议了解一下 writeBarrier
总结
这个函数是首个调用的函数,大部分与基本配置有关,如锁、M的最大数量为10000,CPU 个数,GC等等。
make && queue new G
newprocG
// Create a new g running fn with siz bytes of arguments. // Put it on the queue of g's waiting to run. // The compiler turns a go statement into a call to this. // 使用一个 siz 字节的参数创建一个 fn 的新 g,将它放在g队列里等待运行 // 编译器将 go 语句转换为对这个函数的调用 // // The stack layout of this call is unusual: it assumes that the // arguments to pass to fn are on the stack sequentially immediately // after &fn. Hence, they are logically part of newproc's argument // frame, even though they don't appear in its signature (and can't // because their types differ between call sites). // // This must be nosplit because this stack layout means there are // untyped arguments in newproc's argument frame. Stack copies won't // be able to adjust them and stack splits won't be able to copy them. // //go:nosplit func newproc(siz int32, fn *funcval) {}
mstart
调用 函数。这个函数是M的入口。函数原型:
// mstart is the entry-point for new Ms. // // This must not split the stack because we may not even have stack // bounds set up yet. // // May run during STW (because it doesn't have a P yet), so write // barriers are not allowed. // //go:nosplit //go:nowritebarrierrec func mstart() {}
mstart
STW写屏障
//go:nosplit //go:nowritebarrierrec func mstart() { // 获取一个G(当前为g0) _g_ := getg() // 检查当前G的边界lo是否等于0,如果等于则初始化系统栈 osStack := _g_.stack.lo == 0 if osStack { // Initialize stack bounds from system stack. // Cgo may have left stack size in stack.hi. // minit may update the stack bounds. // 从 system statck 中初始化 _g_.stack 边界 size := _g_.stack.hi // Cgo if size == 0 { size = 8192 * sys.StackGuardMultiplier } // 初始化_g_.stack _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size))) _g_.stack.lo = _g_.stack.hi - size + 1024 } // Initialize stack guard so that we can start calling regular // Go code. // 初始化 _g_.stackguard0,以便可以运行 go code _g_.stackguard0 = _g_.stack.lo + _StackGuard // This is the g0, so we can also call go:systemstack // functions, which check stackguard1. // 这是g0,所以我们也可以调用go:systemstack 函数检查 stackguard1 _g_.stackguard1 = _g_.stackguard0 // 启动m mstart1() // Exit this thread. // 退出当前线程 switch GOOS { case "windows", "solaris", "illumos", "plan9", "darwin", "aix": // Windows, Solaris, illumos, Darwin, AIX and Plan 9 always system-allocate // the stack, but put it in _g_.stack before mstart, // so the logic above hasn't set osStack yet. osStack = true } // 重要函数 mexit(osStack) }
mstart()G
func mstart1() { _g_ := getg() // 判断当前g是否为g0, 在 mstart() 函数里获取的就是g0,这里再判断一次 // g0 是m创建的第一个goroutine,与后面创建的普通goroutine不同,g0主要用来实现对普通goroutine的调度 if _g_ != _g_.m.g0 { throw("bad runtime·mstart") } // Record the caller for use as the top of stack in mcall and // for terminating the thread. // We're never coming back to mstart1 after we call schedule, // so other calls can reuse the current frame. // 记录caller用在mcall中栈顶和终止线程 // 在调用 schedule 后,将不会再返回到 mstart1,所以其它调用可以复用当前 frame // 需要关注下 minit() 函数 save(getcallerpc(), getcallersp()) asminit() minit() // Install signal handlers; after minit so that minit can // prepare the thread to be able to handle the signals. // 安装信息处理器,以便 minit 后,线程可以处理信息 // 当前g0 是 m0 ,则直接启用 m0, m0是一个全局变量 if _g_.m == &m0 { mstartm0() } // 当前m0注册有初始化函数 if fn := _g_.m.mstartfn; fn != nil { fn() } // 当前g0 不是 m0(上面是相等的判断),则从当前绑定的m 里获取一个准备好的P (_g_.m.nextp.ptr())并关联到当前 m 上 if _g_.m != &m0 { acquirep(_g_.m.nextp.ptr()) _g_.m.nextp = 0 } // 调度 重点!重点!重点! schedule() }
minit()
执行顺序从上到下依次为:
minit()mstartm0()m0mstart1acquirep() schedule()runnable