- Kafka是⼀个分布式数据流平台,可以运⾏在单台服务器上,也可以在多台服务器上部署形成集群。它 提供了发布和订阅功能,使⽤者可以发送数据到Kafka中,也可以从Kafka中读取数据(以便进⾏后续的 处理)。Kafka具有⾼吞吐、低延迟、⾼容错等特点
- go语言操作kafka可以使用Shopify/saram第三方包,其开源地址为:https://github.com/Shopify/sarama
- 本文讲解如何操作kafka生产者,关于操作kafka消费者可以参阅:https://dongshao.blog.csdn.net/article/details/111290352
- 输入下面的命令进行下载,如果是"Go Module"也可以使用"go mod tidy"等命令进行下载
go get github.com/Shopify/sarama
# github.com/DataDog/zstd
exec: "gcc":executable file not found in %PATH%
github.com/Shopify/sarama v1.19.0
go mod init
go mod download
go mod tidy
- 下面先演示如何使用kafka生产者,再讲解各个细节
- 代码如下:
package main
import (
"fmt"
"github.com/Shopify/sarama"
)
func main() {
// 设置消费者相关配置
config := sarama.NewConfig()
config.Producer.RequiredAcks = sarama.WaitForAll // 发送完数据需要leader和follow都确认
config.Producer.Partitioner = sarama.NewRandomPartitioner // 选择分区(此处随机设置一个分区)
config.Producer.Return.Successes = true // 成功交付的消息将在success channel返回
// 构造⼀个消息
msg := &sarama.ProducerMessage{}
msg.Topic = "web_log"
msg.Value = sarama.StringEncoder("this is a test log")
// 连接kafka(这里的地址改为你自己的kafka地址)
client, err := sarama.NewSyncProducer([]string{"127.0.0.1:9092"}, config)
if err != nil {
fmt.Println("producer closed, err:", err)
return
}
defer client.Close()
// 发送消息
pid, offset, err := client.SendMessage(msg)
if err != nil {
fmt.Println("send msg failed, err:", err)
return
}
fmt.Printf("pid:%v offset:%v\n", pid, offset)
}
- 然后本地启动kafka服务(这里就不掩饰如何启动kafka服务了),kafka默认监听在9092端口:
- 同时来到kafka的配置文件路径下,可以看到我们刚才创建的分区web_log-0,内容如下:
- .index、.timeindex:是一些索引文件
- leader-epoch-checkpoint:应该是用来校验的
- .log:这个里面才是刚才我们生产者程序写入的数据
- 打开.log文件,内容如下,另外还有一些kafka自己编码进去的内容:
- 这个是一个有很多配置选项的结构。这里面既有生产者也有消费者的配置选项,可以用来在构造生产者或者消费者的时候传给构造函数:
// Config is used to pass multiple configuration options to Sarama's constructors.
type Config struct {
// Admin is the namespace for ClusterAdmin properties used by the administrative Kafka client.
Admin struct {
// The maximum duration the administrative Kafka client will wait for ClusterAdmin operations,
// including topics, brokers, configurations and ACLs (defaults to 3 seconds).
Timeout time.Duration
}
// Net is the namespace for network-level properties used by the Broker, and
// shared by the Client/Producer/Consumer.
Net struct {
// How many outstanding requests a connection is allowed to have before
// sending on it blocks (default 5).
MaxOpenRequests int
// All three of the below configurations are similar to the
// `socket.timeout.ms` setting in JVM kafka. All of them default
// to 30 seconds.
DialTimeout time.Duration // How long to wait for the initial connection.
ReadTimeout time.Duration // How long to wait for a response.
WriteTimeout time.Duration // How long to wait for a transmit.
TLS struct {
// Whether or not to use TLS when connecting to the broker
// (defaults to false).
Enable bool
// The TLS configuration to use for secure connections if
// enabled (defaults to nil).
Config *tls.Config
}
// SASL based authentication with broker. While there are multiple SASL authentication methods
// the current implementation is limited to plaintext (SASL/PLAIN) authentication
SASL struct {
// Whether or not to use SASL authentication when connecting to the broker
// (defaults to false).
Enable bool
// Whether or not to send the Kafka SASL handshake first if enabled
// (defaults to true). You should only set this to false if you're using
// a non-Kafka SASL proxy.
Handshake bool
//username and password for SASL/PLAIN authentication
User string
Password string
}
// KeepAlive specifies the keep-alive period for an active network connection.
// If zero, keep-alives are disabled. (default is 0: disabled).
KeepAlive time.Duration
// LocalAddr is the local address to use when dialing an
// address. The address must be of a compatible type for the
// network being dialed.
// If nil, a local address is automatically chosen.
LocalAddr net.Addr
}
// Metadata is the namespace for metadata management properties used by the
// Client, and shared by the Producer/Consumer.
Metadata struct {
Retry struct {
// The total number of times to retry a metadata request when the
// cluster is in the middle of a leader election (default 3).
Max int
// How long to wait for leader election to occur before retrying
// (default 250ms). Similar to the JVM's `retry.backoff.ms`.
Backoff time.Duration
}
// How frequently to refresh the cluster metadata in the background.
// Defaults to 10 minutes. Set to 0 to disable. Similar to
// `topic.metadata.refresh.interval.ms` in the JVM version.
RefreshFrequency time.Duration
// Whether to maintain a full set of metadata for all topics, or just
// the minimal set that has been necessary so far. The full set is simpler
// and usually more convenient, but can take up a substantial amount of
// memory if you have many topics and partitions. Defaults to true.
Full bool
}
// Producer is the namespace for configuration related to producing messages,
// used by the Producer.
Producer struct {
// The maximum permitted size of a message (defaults to 1000000). Should be
// set equal to or smaller than the broker's `message.max.bytes`.
MaxMessageBytes int
// The level of acknowledgement reliability needed from the broker (defaults
// to WaitForLocal). Equivalent to the `request.required.acks` setting of the
// JVM producer.
RequiredAcks RequiredAcks
// The maximum duration the broker will wait the receipt of the number of
// RequiredAcks (defaults to 10 seconds). This is only relevant when
// RequiredAcks is set to WaitForAll or a number > 1. Only supports
// millisecond resolution, nanoseconds will be truncated. Equivalent to
// the JVM producer's `request.timeout.ms` setting.
Timeout time.Duration
// The type of compression to use on messages (defaults to no compression).
// Similar to `compression.codec` setting of the JVM producer.
Compression CompressionCodec
// The level of compression to use on messages. The meaning depends
// on the actual compression type used and defaults to default compression
// level for the codec.
CompressionLevel int
// Generates partitioners for choosing the partition to send messages to
// (defaults to hashing the message key). Similar to the `partitioner.class`
// setting for the JVM producer.
Partitioner PartitionerConstructor
// Return specifies what channels will be populated. If they are set to true,
// you must read from the respective channels to prevent deadlock. If,
// however, this config is used to create a `SyncProducer`, both must be set
// to true and you shall not read from the channels since the producer does
// this internally.
Return struct {
// If enabled, successfully delivered messages will be returned on the
// Successes channel (default disabled).
Successes bool
// If enabled, messages that failed to deliver will be returned on the
// Errors channel, including error (default enabled).
Errors bool
}
// The following config options control how often messages are batched up and
// sent to the broker. By default, messages are sent as fast as possible, and
// all messages received while the current batch is in-flight are placed
// into the subsequent batch.
Flush struct {
// The best-effort number of bytes needed to trigger a flush. Use the
// global sarama.MaxRequestSize to set a hard upper limit.
Bytes int
// The best-effort number of messages needed to trigger a flush. Use
// `MaxMessages` to set a hard upper limit.
Messages int
// The best-effort frequency of flushes. Equivalent to
// `queue.buffering.max.ms` setting of JVM producer.
Frequency time.Duration
// The maximum number of messages the producer will send in a single
// broker request. Defaults to 0 for unlimited. Similar to
// `queue.buffering.max.messages` in the JVM producer.
MaxMessages int
}
Retry struct {
// The total number of times to retry sending a message (default 3).
// Similar to the `message.send.max.retries` setting of the JVM producer.
Max int
// How long to wait for the cluster to settle between retries
// (default 100ms). Similar to the `retry.backoff.ms` setting of the
// JVM producer.
Backoff time.Duration
}
}
// Consumer is the namespace for configuration related to consuming messages,
// used by the Consumer.
Consumer struct {
// Group is the namespace for configuring consumer group.
Group struct {
Session struct {
// The timeout used to detect consumer failures when using Kafka's group management facility.
// The consumer sends periodic heartbeats to indicate its liveness to the broker.
// If no heartbeats are received by the broker before the expiration of this session timeout,
// then the broker will remove this consumer from the group and initiate a rebalance.
// Note that the value must be in the allowable range as configured in the broker configuration
// by `group.min.session.timeout.ms` and `group.max.session.timeout.ms` (default 10s)
Timeout time.Duration
}
Heartbeat struct {
// The expected time between heartbeats to the consumer coordinator when using Kafka's group
// management facilities. Heartbeats are used to ensure that the consumer's session stays active and
// to facilitate rebalancing when new consumers join or leave the group.
// The value must be set lower than Consumer.Group.Session.Timeout, but typically should be set no
// higher than 1/3 of that value.
// It can be adjusted even lower to control the expected time for normal rebalances (default 3s)
Interval time.Duration
}
Rebalance struct {
// Strategy for allocating topic partitions to members (default BalanceStrategyRange)
Strategy BalanceStrategy
// The maximum allowed time for each worker to join the group once a rebalance has begun.
// This is basically a limit on the amount of time needed for all tasks to flush any pending
// data and commit offsets. If the timeout is exceeded, then the worker will be removed from
// the group, which will cause offset commit failures (default 60s).
Timeout time.Duration
Retry struct {
// When a new consumer joins a consumer group the set of consumers attempt to "rebalance"
// the load to assign partitions to each consumer. If the set of consumers changes while
// this assignment is taking place the rebalance will fail and retry. This setting controls
// the maximum number of attempts before giving up (default 4).
Max int
// Backoff time between retries during rebalance (default 2s)
Backoff time.Duration
}
}
Member struct {
// Custom metadata to include when joining the group. The user data for all joined members
// can be retrieved by sending a DescribeGroupRequest to the broker that is the
// coordinator for the group.
UserData []byte
}
}
Retry struct {
// How long to wait after a failing to read from a partition before
// trying again (default 2s).
Backoff time.Duration
}
// Fetch is the namespace for controlling how many bytes are retrieved by any
// given request.
Fetch struct {
// The minimum number of message bytes to fetch in a request - the broker
// will wait until at least this many are available. The default is 1,
// as 0 causes the consumer to spin when no messages are available.
// Equivalent to the JVM's `fetch.min.bytes`.
Min int32
// The default number of message bytes to fetch from the broker in each
// request (default 1MB). This should be larger than the majority of
// your messages, or else the consumer will spend a lot of time
// negotiating sizes and not actually consuming. Similar to the JVM's
// `fetch.message.max.bytes`.
Default int32
// The maximum number of message bytes to fetch from the broker in a
// single request. Messages larger than this will return
// ErrMessageTooLarge and will not be consumable, so you must be sure
// this is at least as large as your largest message. Defaults to 0
// (no limit). Similar to the JVM's `fetch.message.max.bytes`. The
// global `sarama.MaxResponseSize` still applies.
Max int32
}
// The maximum amount of time the broker will wait for Consumer.Fetch.Min
// bytes to become available before it returns fewer than that anyways. The
// default is 250ms, since 0 causes the consumer to spin when no events are
// available. 100-500ms is a reasonable range for most cases. Kafka only
// supports precision up to milliseconds; nanoseconds will be truncated.
// Equivalent to the JVM's `fetch.wait.max.ms`.
MaxWaitTime time.Duration
// The maximum amount of time the consumer expects a message takes to
// process for the user. If writing to the Messages channel takes longer
// than this, that partition will stop fetching more messages until it
// can proceed again.
// Note that, since the Messages channel is buffered, the actual grace time is
// (MaxProcessingTime * ChanneBufferSize). Defaults to 100ms.
// If a message is not written to the Messages channel between two ticks
// of the expiryTicker then a timeout is detected.
// Using a ticker instead of a timer to detect timeouts should typically
// result in many fewer calls to Timer functions which may result in a
// significant performance improvement if many messages are being sent
// and timeouts are infrequent.
// The disadvantage of using a ticker instead of a timer is that
// timeouts will be less accurate. That is, the effective timeout could
// be between `MaxProcessingTime` and `2 * MaxProcessingTime`. For
// example, if `MaxProcessingTime` is 100ms then a delay of 180ms
// between two messages being sent may not be recognized as a timeout.
MaxProcessingTime time.Duration
// Return specifies what channels will be populated. If they are set to true,
// you must read from them to prevent deadlock.
Return struct {
// If enabled, any errors that occurred while consuming are returned on
// the Errors channel (default disabled).
Errors bool
}
// Offsets specifies configuration for how and when to commit consumed
// offsets. This currently requires the manual use of an OffsetManager
// but will eventually be automated.
Offsets struct {
// How frequently to commit updated offsets. Defaults to 1s.
CommitInterval time.Duration
// The initial offset to use if no offset was previously committed.
// Should be OffsetNewest or OffsetOldest. Defaults to OffsetNewest.
Initial int64
// The retention duration for committed offsets. If zero, disabled
// (in which case the `offsets.retention.minutes` option on the
// broker will be used). Kafka only supports precision up to
// milliseconds; nanoseconds will be truncated. Requires Kafka
// broker version 0.9.0 or later.
// (default is 0: disabled).
Retention time.Duration
Retry struct {
// The total number of times to retry failing commit
// requests during OffsetManager shutdown (default 3).
Max int
}
}
}
// A user-provided string sent with every request to the brokers for logging,
// debugging, and auditing purposes. Defaults to "sarama", but you should
// probably set it to something specific to your application.
ClientID string
// The number of events to buffer in internal and external channels. This
// permits the producer and consumer to continue processing some messages
// in the background while user code is working, greatly improving throughput.
// Defaults to 256.
ChannelBufferSize int
// The version of Kafka that Sarama will assume it is running against.
// Defaults to the oldest supported stable version. Since Kafka provides
// backwards-compatibility, setting it to a version older than you have
// will not break anything, although it may prevent you from using the
// latest features. Setting it to a version greater than you are actually
// running may lead to random breakage.
Version KafkaVersion
// The registry to define metrics into.
// Defaults to a local registry.
// If you want to disable metrics gathering, set "metrics.UseNilMetrics" to "true"
// prior to starting Sarama.
// See Examples on how to use the metrics registry
MetricRegistry metrics.Registry
}
Producer struct {
MaxMessageBytes int
RequiredAcks RequiredAcks
Timeout time.Duration
Compression CompressionCodec
CompressionLevel int
Partitioner PartitionerConstructor
Return struct {
Successes bool
Errors bool
}
Flush struct {
Bytes int
Messages int
Frequency time.Duration
MaxMessages int
}
Retry struct {
Max int
Backoff time.Duration
}
}
Producer struct {
RequiredAcks RequiredAcks
}
type RequiredAcks int16
const (
NoResponse RequiredAcks = 0
WaitForLocal RequiredAcks = 1
WaitForAll RequiredAcks = -1
)
Producer struct {
Partitioner PartitionerConstructor
}
func NewRandomPartitioner(topic string) Partitioner
Producer struct {
Return struct {
Successes bool
Errors bool
}
}
// ProducerMessage is the collection of elements passed to the Producer in order to send a message.
type ProducerMessage struct {
Topic string // The Kafka topic for this message.
// The partitioning key for this message. Pre-existing Encoders include
// StringEncoder and ByteEncoder.
Key Encoder
// The actual message to store in Kafka. Pre-existing Encoders include
// StringEncoder and ByteEncoder.
Value Encoder
// The headers are key-value pairs that are transparently passed
// by Kafka between producers and consumers.
Headers []RecordHeader
// This field is used to hold arbitrary data you wish to include so it
// will be available when receiving on the Successes and Errors channels.
// Sarama completely ignores this field and is only to be used for
// pass-through data.
Metadata interface{}
// Below this point are filled in by the producer as the message is processed
// Offset is the offset of the message stored on the broker. This is only
// guaranteed to be defined if the message was successfully delivered and
// RequiredAcks is not NoResponse.
Offset int64
// Partition is the partition that the message was sent to. This is only
// guaranteed to be defined if the message was successfully delivered.
Partition int32
// Timestamp can vary in behaviour depending on broker configuration, being
// in either one of the CreateTime or LogAppendTime modes (default CreateTime),
// and requiring version at least 0.10.0.
//
// When configured to CreateTime, the timestamp is specified by the producer
// either by explicitly setting this field, or when the message is added
// to a produce set.
//
// When configured to LogAppendTime, the timestamp assigned to the message
// by the broker. This is only guaranteed to be defined if the message was
// successfully delivered and RequiredAcks is not NoResponse.
Timestamp time.Time
retries int
flags flagSet
expectation chan *ProducerError
sequenceNumber int32
producerEpoch int16
hasSequence bool
}
- 生产者发送的数据类型为ProducerMessage类型
type ProducerMessage struct {
Topic string
}
type ProducerMessage struct {
Value Encoder
}
type Encoder interface {
Encode() ([]byte, error)
Length() int
}
type StringEncoder string
func (s StringEncoder) Encode() ([]byte, error) {
return []byte(s), nil
}
func (s StringEncoder) Length() int {
return len(s)
}
// SyncProducer publishes Kafka messages, blocking until they have been acknowledged. It routes messages to the correct
// broker, refreshing metadata as appropriate, and parses responses for errors. You must call Close() on a producer
// to avoid leaks, it may not be garbage-collected automatically when it passes out of scope.
//
// The SyncProducer comes with two caveats: it will generally be less efficient than the AsyncProducer, and the actual
// durability guarantee provided when a message is acknowledged depend on the configured value of `Producer.RequiredAcks`.
// There are configurations where a message acknowledged by the SyncProducer can still sometimes be lost.
//
// For implementation reasons, the SyncProducer requires `Producer.Return.Errors` and `Producer.Return.Successes` to
// be set to true in its configuration.
type SyncProducer interface {
// SendMessage produces a given message, and returns only when it either has
// succeeded or failed to produce. It will return the partition and the offset
// of the produced message, or an error if the message failed to produce.
SendMessage(msg *ProducerMessage) (partition int32, offset int64, err error)
// SendMessages produces a given set of messages, and returns only when all
// messages in the set have either succeeded or failed. Note that messages
// can succeed and fail individually; if some succeed and some fail,
// SendMessages will return an error.
SendMessages(msgs []*ProducerMessage) error
// Close shuts down the producer and waits for any buffered messages to be
// flushed. You must call this function before a producer object passes out of
// scope, as it may otherwise leak memory. You must call this before calling
// Close on the underlying client.
Close() error
}
- 代表生产者类型
- NewSyncProducer()函数:根据传入的broker地址和相关生产者配置创建一个生产者对象
func NewSyncProducer(addrs []string, config *Config) (SyncProducer, error)
- SendMessage()方法:
- 向broker中写入数据,数据为ProducerMessage类型
- 下面有两种调用形式
- 第一种SendMessage产生给定的消息,并仅在成功或失败产生时返回。它将返回所产生的消息的分区和偏移量,如果消息未能产生,则返回一个错误
SendMessage(msg *ProducerMessage) (partition int32, offset int64, err error)
SendMessages(msgs []*ProducerMessage) error
- Close()方法:Close关闭生产者并等待所有缓冲消息被刷新。您必须在生产者对象超出作用域之前调用此函数,否则它可能会泄漏内存。您必须在调用底层客户机的Close之前调用这个函数
Close() error