1、快速排序稳定性

快速排序是不稳定的算法,它不满足稳定算法的定义。

算法稳定性 -- 假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!

2、快速排序时间复杂度

快速排序的时间复杂度在最坏情况下是O(N²),平均的时间复杂度是O(N*lgN)。

这句话很好理解:假设被排序的数列中有N个数。遍历一次的时间复杂度是O(N),需要遍历多少次呢?至少lg(N+1)次,最多N次。

(01) 为什么最少是lg(N+1)次?快速排序是采用的分治法进行遍历的,我们将它看作一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的定义,它的深度至少是lg(N+1)。因此,快速排序的遍历次数最少是lg(N+1)次。

(02) 为什么最多是N次?这个应该非常简单,还是将快速排序看作一棵二叉树,它的深度最大是N。因此,快读排序的遍历次数最多是N次。

3、示例

// golang
func quickSort(arr []int, start, end int) {
    if start < end {
        i, j := start, end
        key := arr[(start+end)/2]
        for i <= j {
            for arr[i] < key {
                i++
            }
            for arr[j] > key {
                j--
            }
            if i <= j {
                arr[i], arr[j] = arr[j], arr[i]
                i++
                j--
            }
        }

        if start < j {
            quickSort(arr, start, j)
        }
        if end > i {
            quickSort(arr, i, end)
        }
    }
}

4、算法流程分析

快速排序(Quick Sort)使用分治法策略。

它的基本思想是:选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

快速排序流程:

  1. 从数列中挑出一个基准值。
  2. 将所有比基准值小的摆放在基准前面,所有比基准值大的摆在基准的后面(相同的数可以到任一边);在这个分区退出之后,该基准就处于数列的中间位置。
  3. 递归地把"基准值前面的子数列"和"基准值后面的子数列"进行排序。

下面以数列a={30,40,60,10,20,50}为例,演示它的快速排序过程(如下图)。

golang 之快速排序

上图只是给出了第1趟快速排序的流程。在第1趟中,设置x=a[i],即x=30。

(01) 从"右 --> 左"查找小于x的数:找到满足条件的数a[j]=20,此时j=4;然后将a[j]赋值a[i],此时i=0;接着从左往右遍历。

(02) 从"左 --> 右"查找大于x的数:找到满足条件的数a[i]=40,此时i=1;然后将a[i]赋值a[j],此时j=4;接着从右往左遍历。

(03) 从"右 --> 左"查找小于x的数:找到满足条件的数a[j]=10,此时j=3;然后将a[j]赋值a[i],此时i=1;接着从左往右遍历。

(04) 从"左 --> 右"查找大于x的数:找到满足条件的数a[i]=60,此时i=2;然后将a[i]赋值a[j],此时j=3;接着从右往左遍历。

(05) 从"右 --> 左"查找小于x的数:没有找到满足条件的数。当i>=j时,停止查找;然后将x赋值给a[i]。此趟遍历结束!

按照同样的方法,对子数列进行递归遍历。最后得到有序数组!