另一种情况是P所分配的任务G很快就执行完了(分配不均),这就导致了这个处理器P很忙,但是其他的P还有任务,此时如果global runqueue没有任务G了,那么P不得不从其他的P里拿一些G来执行。一般来说,如果P从其他的P那里要拿任务的话,一般就拿run queue的一半,这就确保了每个OS线程都能充分的使用,如下图:
参考地址:http://morsmachine.dk/go-scheduler
 
 

三、使用goroutine

基本使用

设置goroutine运行的CPU数量,最新版本的go已经默认已经设置了。

num := runtime.NumCPU()    //获取主机的逻辑CPU个数
runtime.GOMAXPROCS(num)    //设置可同时执行的最大CPU数

使用示例

package main

import (
    "fmt"
    "time"
)

func cal(a int , b int )  {
    c := a+b
    fmt.Printf("%d + %d = %d\n",a,b,c)
}

func main() {
   for i :=0 ; i<10 ;i++{ go cal(i,i+1) //启动10个goroutine 来计算 } time.Sleep(time.Second * 2) // sleep作用是为了等待所有任务完成 } //结果 //8 + 9 = 17 //9 + 10 = 19 //4 + 5 = 9 //5 + 6 = 11 //0 + 1 = 1 //1 + 2 = 3 //2 + 3 = 5 //3 + 4 = 7 //7 + 8 = 15 //6 + 7 = 13

goroutine异常捕捉

当启动多个goroutine时,如果其中一个goroutine异常了,并且我们并没有对进行异常处理,那么整个程序都会终止,所以我们在编写程序时候最好每个goroutine所运行的函数都做异常处理,异常处理采用recover

package main

import (
    "fmt"
    "time"
)

func addele(a []int ,i int)  {
    defer func() {    //匿名函数捕获错误
        err := recover()
        if err != nil {
            fmt.Println("add ele fail")
        }
    }()
   a[i]=i
   fmt.Println(a)
}

func main() {
    Arry := make([]int,4)
    for i :=0 ; i<10 ;i++{
        go addele(Arry,i)
    }
    time.Sleep(time.Second * 2)
}
//结果
add ele fail
[0 0 0 0]
[0 1 0 0]
[0 1 2 0]
[0 1 2 3]
add ele fail
add ele fail
add ele fail
add ele fail
add ele fail

同步的goroutine

由于goroutine是异步执行的,那很有可能出现主程序退出时还有goroutine没有执行完,此时goroutine也会跟着退出。此时如果想等到所有goroutine任务执行完毕才退出,go提供了sync包和channel来解决同步问题,当然如果你能预测每个goroutine执行的时间,你还可以通过time.Sleep方式等待所有的groutine执行完成以后在退出程序(如上面的列子)。

示例一:使用sync包同步goroutine
sync大致实现方式
WaitGroup 等待一组goroutinue执行完毕. 主程序调用 Add 添加等待的goroutinue数量. 每个goroutinue在执行结束时调用 Done ,此时等待队列数量减1.,主程序通过Wait阻塞,直到等待队列为0.
 
package main

import (
    "fmt"
    "sync"
)

func cal(a int , b int ,n *sync.WaitGroup)  {
    c := a+b
    fmt.Printf("%d + %d = %d\n",a,b,c)
    defer n.Done() //goroutinue完成后, WaitGroup的计数-1

}

func main() {
    var go_sync sync.WaitGroup //声明一个WaitGroup变量
    for i :=0 ; i<10 ;i++{
        go_sync.Add(1) // WaitGroup的计数加1
        go cal(i,i+1,&go_sync)  
    }
    go_sync.Wait()  //等待所有goroutine执行完毕
}
//结果
9 + 10 = 19
2 + 3 = 5
3 + 4 = 7
4 + 5 = 9
5 + 6 = 11
1 + 2 = 3
6 + 7 = 13
7 + 8 = 15
0 + 1 = 1
8 + 9 = 17

示例二:通过channel实现goroutine之间的同步。

实现方式:通过channel能在多个groutine之间通讯,当一个goroutine完成时候向channel发送退出信号,等所有goroutine退出时候,利用for循环channe去channel中的信号,若取不到数据会阻塞原理,等待所有goroutine执行完毕,使用该方法有个前提是你已经知道了你启动了多少个goroutine。

package main

import (
    "fmt"
    "time"
)

func cal(a int , b int ,Exitchan chan bool)  {
    c := a+b
    fmt.Printf("%d + %d = %d\n",a,b,c)
    time.Sleep(time.Second*2)
    Exitchan <- true
}

func main() {

    Exitchan := make(chan bool,10)  //声明并分配管道内存
    for i :=0 ; i<10 ;i++{
        go cal(i,i+1,Exitchan)
    }
    for j :=0; j<10; j++{   
         <- Exitchan  //取信号数据,如果取不到则会阻塞
    }
    close(Exitchan) // 关闭管道
}

goroutine之间的通讯

goroutine本质上是协程,可以理解为不受内核调度,而受go调度器管理的线程。goroutine之间可以通过channel进行通信或者说是数据共享,当然你也可以使用全局变量来进行数据共享。

示例:使用channel模拟消费者和生产者模式

package main

import (
    "fmt"
    "sync"
)

func Productor(mychan chan int,data int,wait *sync.WaitGroup)  {
    mychan <- data
    fmt.Println("product data:",data)
    wait.Done()
}
func Consumer(mychan chan int,wait *sync.WaitGroup)  {
     a := <- mychan
    fmt.Println("consumer data:",a)
     wait.Done()
}
func main() {

    datachan := make(chan int, 100)   //通讯数据管道
    var wg sync.WaitGroup

    for i := 0; i < 10; i++ {
        go Productor(datachan, i,&wg) //生产数据
        wg.Add(1)
    }
    for j := 0; j < 10; j++ {
        go Consumer(datachan,&wg)  //消费数据
        wg.Add(1)
    }
    wg.Wait()
}
//结果
consumer data: 4
product data: 5
product data: 6
product data: 7
product data: 8
product data: 9
consumer data: 1
consumer data: 5
consumer data: 6
consumer data: 7
consumer data: 8
consumer data: 9
product data: 2
consumer data: 2
product data: 3
consumer data: 3
product data: 4
consumer data: 0
product data: 0
product data: 1

 

四、channel

简介

channel俗称管道,用于数据传递或数据共享,其本质是一个先进先出的队列,使用goroutine+channel进行数据通讯简单高效,同时也线程安全,多个goroutine可同时修改一个channel,不需要加锁。

channel可分为三种类型:

只读channel:只能读channel里面数据,不可写入

只写channel:只能写数据,不可读

一般channel:可读可写

channel使用

定义和声明

var readOnlyChan <-chan int            // 只读chan
var writeOnlyChan chan<- int           // 只写chan
var mychan  chan int                     //读写channel
//定义完成以后需要make来分配内存空间,不然使用会deadlock
mychannel = make(chan int,10)

//或者
read_only := make (<-chan int,10)//定义只读的channel
write_only := make (chan<- int,10)//定义只写的channel
read_write := make (chan int,10)//可同时读写

 读写数据

需要注意的是:

  • 管道如果未关闭,在读取超时会则会引发deadlock异常
  • 管道如果关闭进行写入数据会pannic
  • 当管道中没有数据时候再行读取或读取到默认值,如int类型默认值是0
ch <- "wd"  //写数据
a := <- ch //读取数据
a, ok := <-ch  //优雅的读取数据

循环管道

需要注意的是:

  • 使用range循环管道,如果管道未关闭会引发deadlock错误。
  • 如果采用for死循环已经关闭的管道,当管道没有数据时候,读取的数据会是管道的默认值,并且循环不会退出。
package main

import (
    "fmt"
    "time"
)


func main() {
    mychannel := make(chan int,10)
    for i := 0;i < 10;i++{
        mychannel <- i
    }
    close(mychannel)  //关闭管道
    fmt.Println("data lenght: ",len(mychannel))
    for  v := range mychannel {  //循环管道
        fmt.Println(v)
    }
    fmt.Printf("data lenght:  %d",len(mychannel))
}

带缓冲区channe和不带缓冲区channel

带缓冲区channel:定义声明时候制定了缓冲区大小(长度),可以保存多个数据。

不带缓冲区channel:只能存一个数据,并且只有当该数据被取出时候才能存下一个数据。

ch := make(chan int) //不带缓冲区
ch := make(chan int ,10) //带缓冲区

不带缓冲区示例:

package main

import "fmt"

func test(c chan int) {
    for i := 0; i < 10; i++ {
        fmt.Println("send ", i)
        c <- i
    }
}
func main() {
    ch := make(chan int)
    go test(ch)
    for j := 0; j < 10; j++ {
        fmt.Println("get ", <-ch)
    }
}


//结果:
send  0
send  1
get  0
get  1
send  2
send  3
get  2
get  3
send  4
send  5
get  4
get  5
send  6
send  7
get  6
get  7
send  8
send  9
get  8
get  9

channel实现作业池

我们创建三个channel,一个channel用于接受任务,一个channel用于保持结果,还有个channel用于决定程序退出的时候。

package main

import (
    "fmt"
)

func Task(taskch, resch chan int, exitch chan bool) {
    defer func() {   //异常处理
        err := recover()
        if err != nil {
            fmt.Println("do task error:", err)
            return
        }
    }()

    for t := range taskch { //  处理任务
        fmt.Println("do task :", t)
        resch <- t //
    }
    exitch <- true //处理完发送退出信号
}

func main() {
    taskch := make(chan int, 20) //任务管道
    resch := make(chan int, 20)  //结果管道
    exitch := make(chan bool, 5) //退出管道
    go func() {
        for i := 0; i < 10; i++ {
            taskch <- i
        }
        close(taskch)
    }()


    for i := 0; i < 5; i++ {  //启动5个goroutine做任务
        go Task(taskch, resch, exitch)
    }

    go func() { //等5个goroutine结束
        for i := 0; i < 5; i++ {
            <-exitch
        }
        close(resch)  //任务处理完成关闭结果管道,不然range报错
        close(exitch)  //关闭退出管道
    }()

    for res := range resch{  //打印结果
        fmt.Println("task res:",res)
    }
}

只读channel和只写channel

一般定义只读和只写的管道意义不大,更多时候我们可以在参数传递时候指明管道可读还是可写,即使当前管道是可读写的。

package main

import (
    "fmt"
    "time"
)

//只能向chan里写数据
func send(c chan<- int) {
    for i := 0; i < 10; i++ {
        c <- i
    }
}
//只能取channel中的数据
func get(c <-chan int) {
    for i := range c {
        fmt.Println(i)
    }
}
func main() {
    c := make(chan int)
    go send(c)
    go get(c)
    time.Sleep(time.Second*1)
}
//结果
0
1
2
3
4
5
6
7
8
9

 

select-case实现非阻塞channel

原理通过select+case加入一组管道,当满足(这里说的满足意思是有数据可读或者可写)select中的某个case时候,那么该case返回,若都不满足case,则走default分支。

package main

import (
    "fmt"
)

func send(c chan int)  {
    for i :=1 ; i<10 ;i++  {
     c <-i
     fmt.Println("send data : ",i)
    }
}

func main() {
    resch := make(chan int,20)
    strch := make(chan string,10)
    go send(resch)
    strch <- "wd"
    select {
    case a := <-resch:
        fmt.Println("get data : ", a)
    case b := <-strch:
        fmt.Println("get data : ", b)
    default:
        fmt.Println("no channel actvie")

    }

}

//结果:get data :  wd

channel频率控制

在对channel进行读写的时,go还提供了非常人性化的操作,那就是对读写的频率控制,通过time.Ticke实现

示例:

package main

import (
    "time"
    "fmt"
)

func main(){
    requests:= make(chan int ,5)
    for i:=1;i<5;i++{
        requests<-i
    }
    close(requests)
    limiter := time.Tick(time.Second*1)
    for req:=range requests{
        <-limiter
        fmt.Println("requets",req,time.Now()) //执行到这里,需要隔1秒才继续往下执行,time.Tick(timer)上面已定义
    }
}
//结果:
requets 1 2018-07-06 10:17:35.98056403 +0800 CST m=+1.004248763
requets 2 2018-07-06 10:17:36.978123472 +0800 CST m=+2.001798205
requets 3 2018-07-06 10:17:37.980869517 +0800 CST m=+3.004544250
requets 4 2018-07-06 10:17:38.976868836 +0800 CST m=+4.000533569