目录

数组

go开发者在日常的工作中slice算是用的比较多的了,在介绍slice之前,我们先了解下数组,数组相信大家都不陌生,数组的数据结构比较简单,它在内存中是连续的。以一个存了10个数字的数组为例来说:

a:=[10]int{0,1,2,3,4,5,6,7,8,9}

它在内存中大概是这样的:

得益于连续性,所以数组的特点就是:

  • 大小固定
  • 访问快,复杂度为O(1);
  • 插入和删除元素因为要移动元素,所以相比查询会慢。 当我们要访问一个越界的元素的元素时,go甚至编辑都不通过:
a := [10]int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
fmt.Println(a[10])
// invalid array index 10 (out of bounds for 10-element array)

切片

相比数组,go的slice(切片)要相对灵活些,比较大的不同点就是slice的长度可以不固定,创建的时候不用指明长度,在go中slice是一种设计过的数据结构:

type slice struct {
   array unsafe.Pointer //指针
   len   int //长度
   cap   int //容量
}

slice的底层其实还是数组,通过指针指向它底层的数组,len是slice的长度,cap是slice的容量,slice添加元素时,且cap容量不足时,会根据策略扩容。

切片的创建

直接声明

var s []int
nil

new方式初始化

s:=*new([]int) 

new的方式和直接声明的方式区别不大,最终产出的都是一个nil的slice。

字面量

s1 := []int{0, 1, 2}
s2 := []int{0, 1, 2, 4: 4}
s3 := []int{0, 1, 2, 4: 4, 5, 6, 9: 9}
fmt.Println(s1, len(s1), cap(s1)) //[0 1 2] 3 3
fmt.Println(s2, len(s2), cap(s2)) //[0 1 2 0 4] 5 5
fmt.Println(s3, len(s3), cap(s3)) //[0 1 2 0 4 5 6 0 0 9] 10 10

字面量创建的slice,默认长度和容量是相等的,需要注意的是如果我们单独指明了某个索引的值,那么在这个索引值前面的元素如果未声明的话,就会是slice的类型的默认值。

make方式

s := make([]int, 5, 6)
fmt.Println(s, len(s), cap(s)) //[0 0 0 0 0] 5 6

通过make可以指定slice的长度和容量。

截取方式

切片可以从数组或者其他切片中截取获得,这时新的切片会和老的数组或切片共享一个底层数组,不管谁修改了数据,都会影响到底层的数组,但是如果新的切片发生了扩容,那么底层的数组就不是同一个。

s[:]

a := []int{0, 1, 2, 3, 4}
b := a[:]
fmt.Println(b, len(b), cap(b)) //[0 1 2 3 4] 5 5
:[0,len(a)-1]

s[i:]

a := []int{0, 1, 2, 3, 4}
b := a[1:]
fmt.Println(b, len(b), cap(b)) //[1 2 3 4] 4 4
cap(b)=cap(a)-ia[5:]a[6:]
a := []int{0, 1, 2, 3, 4}
b := a[5:] //[]
c := a[6:] //runtime error: slice bounds out of range [6:5]

c虽然报错了,但是它只是运行时报错,编译还是能通过的

s[:j]

a := []int{0, 1, 2, 3, 4}
b := a[:4]
fmt.Println(b, len(b), cap(b)) //[0 1 2 3] 4 5
[0-j)cap(b) = cap(a)

s[i:j]

a := []int{0, 1, 2, 3, 4}
b := a[2:4]
fmt.Println(b, len(b), cap(b)) //[2 3] 2 3
[i-j)cap(b) = cap(a)-i

s[i:j:x]

a := []int{0, 1, 2, 3, 4}
b := a[1:2:3]
fmt.Println(b, len(b), cap(b)) //[1] 1 2
cap(b)=cap(a)-ixcap(b) = x-icap(a)-i

看个例子

s0 := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
s1 := s0[3:6] //[3 4 5] 3 7

s1是对s0的切片,所以它们大概是这样:

s2 := s1[1:3:4]

这时指定个s2,s2是对s1的切片,并且s2的len=2,cap=3,所以大概长这样:

s1[1] = 40
fmt.Println(s0, s1, s2)// [0 1 2 3 40 5 6 7 8 9] [3 40 5] [40 5]

这时把s1[1]修改成40,因为没有涉及到扩容,s0、s1、s2重叠部分都指向同一个底层数组,所以最终发现s0、s2对应的位置都变成了40。

s2 = append(s2, 10)
fmt.Println(s2, len(s2), cap(s2)) //[40 5 10] 3 3

再向s2中添加一个元素,因为s2还有一个空间,所以不用发生扩容。

s2 = append(s2, 11)
fmt.Println(s2, len(s2), cap(s2)) //[40 5 10 11] 4 6

继续向s2中添加一个元素,此时s2已经没有空间了,所以会触发扩容,扩容后指向一个新的底层数据,和原来的底层数组解耦了。

此时无论怎么修改s2都不会影响到s1和s2。

切片的扩容

growslice
func growslice(et *_type, old slice, cap int) slice {
    ....
    newcap := old.cap
    doublecap := newcap + newcap
    if cap > doublecap {
            newcap = cap
    } else {
        if old.len < 1024 {
              newcap = doublecap
        } else {
            // Check 0 < newcap to detect overflow
            // and prevent an infinite loop.
            for 0 < newcap && newcap < cap {
                  newcap += newcap / 4
            }
            // Set newcap to the requested cap when
            // the newcap calculation overflowed.
            if newcap <= 0 {
                 newcap = cap
            }
        }
    }
    ....
    return slice{p, old.len, newcap}
}

入参说明下:

etoldcap
a := []int{1, 2}
fmt.Println(len(a), cap(a)) //2 2
a = append(a, 2, 3, 4)
fmt.Println(len(a), cap(a)) // 5 6

按照规则1,这时的cap应该是5,结果是6。

a := make([]int, 1280, 1280)
fmt.Println(len(a), cap(a)) //1280 1280
a = append(a, 1)
fmt.Println(len(a), cap(a), 1280*1.25) //1281 1696 1600

按照规则3,这时的cap应该是原来的1.25倍,即1600,结果是1696。

内存对齐

其实上面两个扩容,只能说不是最终的结果,go还会做一些内存对齐的优化,通过内存对齐可以提升读取的效率。

// 内存对齐
capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
capmem = roundupsize(capmem)
newcap = int(capmem / et.size)

空切片和nil切片

空切片:slice的指针不为空,len和cap都是0
nil切片:slice的指针不指向任何地址即array=0,len和cap都是0

nil
var a []inta:=make([]int,0)
a:=*new([]int)a:=[]int{}
zerobase
var zerobase uintptr
if size == 0 {
      return unsafe.Pointer(&zerobase)
}

所有空切片的地址都是一样的。

var a1 []int
a2:=*new([]int)
a3:=make([]int,0)
a4:=[]int{}

fmt.Println(*(*[3]int)(unsafe.Pointer(&a1))) //[0 0 0]
fmt.Println(*(*[3]int)(unsafe.Pointer(&a2))) //[0 0 0]
fmt.Println(*(*[3]int)(unsafe.Pointer(&a3))) //[824634101440 0 0]
fmt.Println(*(*[3]int)(unsafe.Pointer(&a4))) //[824634101440 0 0]

数组是值传递,切片是引用传递?

func main() {
   array := [10]int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
   slice := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
   changeArray(array)
   fmt.Println(array) //[0 1 2 3 4 5 6 7 8 9]
   changeSlice(slice)
   fmt.Println(slice) //[1 1 2 3 4 5 6 7 8 9]
}

func changeArray(a [10]int) {
   a[0] = 1
}

func changeSlice(a []int) {
   a[0] = 1
}
  • 定义一个数组和一个切片
  • 通过changeArray改变数组下标为0的值
  • 通过changeSlice改变切片下标为0的值
  • 原数组值未被修改,原切片的值已经被修改 这个表象看起来像是slice是指针传递似的,但是如果我们这样呢:
func main() {
   slice := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
   changeSlice(slice)//[0 1 2 3 4 5 6 7 8 9]
}
func changeSlice(a []int) {
   a = append(a, 99)
}

会发现原slice的值并没有被改变,这是因为我们用了append,append之后,原slice的容量已经不够了,这时候会copy出一个新的数组。其实go的函数参数传递,只有值传递,没有引用传递,当slice的底层数据没有改变的时候,怎么修改都会影响原底层数组,当slice发生扩容时,扩容后就是新的数组,那么怎么修改这个新的数组都不会影响原来的数组。

数组和slice能不能比较

只有长度相同,类型也相同的数组才能比较

a:=[2]int{1,2}
b:=[2]int{1,2}
fmt.Println(a==b) true

a:=[2]int{1,2}
b:=[3]int{1,2,3}
fmt.Println(a==b) //invalid operation: a == b (mismatched types [2]int and [3]int)

a:=[2]int{1,2}
b:=[2]int8{1,2}
fmt.Println(a==b) //invalid operation: a == b (mismatched types [2]int and [2]int8)

slice只能和nil做比较,其余的都不能比较

a:=[]int{1,2}
b:=[]int{1,2}
fmt.Println(a==b)//invalid operation: a == b (slice can only be compared to nil)

但是需要注意的是,两个都是nil的slice也不能进行比较,它只能和nil对比,这里的nil是真真实实的nil。

var a []int
var b []int
fmt.Println(a == b) //invalid operation: a == b (slice can only be compared to nil)
fmt.Println(a == nil) //true
您可能感兴趣的文章: