目录
切片的解析
[]SliceType
// go/src/cmd/compile/internal/syntax/parser.go // TypeSpec = identifier [ TypeParams ] [ "=" ] Type . func (p *parser) typeDecl(group *Group) Decl { ... if p.tok == _Lbrack { // d.Name "[" ... // array/slice type or type parameter list pos := p.pos() p.next() switch p.tok { ... case _Rbrack: // d.Name "[" "]" ... p.next() d.Type = p.sliceType(pos) ... } } ... } func (p *parser) sliceType(pos Pos) Expr { t := new(SliceType) t.pos = pos t.Elem = p.type_() return t } // go/src/cmd/compile/internal/syntax/nodes.go type ( ... // []Elem SliceType struct { Elem Expr expr } ... )
SliceElemNewSlice()
// go/src/cmd/compile/internal/types/type.go type Slice struct { Elem *Type // element type } func NewSlice(elem *Type) *Type { if t := elem.cache.slice; t != nil { if t.Elem() != elem { base.Fatalf("elem mismatch") } if elem.HasTParam() != t.HasTParam() || elem.HasShape() != t.HasShape() { base.Fatalf("Incorrect HasTParam/HasShape flag for cached slice type") } return t } t := newType(TSLICE) t.extra = Slice{Elem: elem} elem.cache.slice = t if elem.HasTParam() { t.SetHasTParam(true) } if elem.HasShape() { t.SetHasShape(true) } return t }
切片的初始化
make
例如:
litSlic := []int{1,2,3,4} // 字面量初始化 makeSlic := make([]int,0) // make初始化
字面量初始化
walkwalkComplitlengthslicelit(static array)(auto array)(copy the static array to the auto array)
// go/src/cmd/compile/internal/walk/complit.go // walkCompLit walks a composite literal node: // OARRAYLIT, OSLICELIT, OMAPLIT, OSTRUCTLIT (all CompLitExpr), or OPTRLIT (AddrExpr). func walkCompLit(n ir.Node, init *ir.Nodes) ir.Node { if isStaticCompositeLiteral(n) && !ssagen.TypeOK(n.Type()) { n := n.(*ir.CompLitExpr) // not OPTRLIT // n can be directly represented in the read-only data section. // Make direct reference to the static data. See issue 12841. vstat := readonlystaticname(n.Type()) fixedlit(inInitFunction, initKindStatic, n, vstat, init) return typecheck.Expr(vstat) } var_ := typecheck.Temp(n.Type()) anylit(n, var_, init) return var_ }
类型检查时,计算出切片长度的过程为:
// go/src/cmd/compile/internal/typecheck/expr.go func tcCompLit(n *ir.CompLitExpr) (res ir.Node) { ... t := n.Type() base.AssertfAt(t != nil, n.Pos(), "missing type in composite literal") switch t.Kind() { ... case types.TSLICE: length := typecheckarraylit(t.Elem(), -1, n.List, "slice literal") n.SetOp(ir.OSLICELIT) n.Len = length ... } return n }
切片的具体初始化过程为:
- 在静态存储区创建一个数组;
- 将数组赋值给一个常量部分;
- 创建一个自动指针即切片分配到堆区,并指向数组;
- 将数组中的数据从静态区拷贝到切片的堆区;
- 对每一个切片元素按索引位置分别进行赋值;
- 最后将分配到堆区的切片赋值给定义的变量;
源代码通过注释也写明了整个过程。
// go/src/cmd/compile/internal/walk/complit.go func anylit(n ir.Node, var_ ir.Node, init *ir.Nodes) { t := n.Type() switch n.Op() { ... case ir.OSLICELIT: n := n.(*ir.CompLitExpr) slicelit(inInitFunction, n, var_, init) ... } } func slicelit(ctxt initContext, n *ir.CompLitExpr, var_ ir.Node, init *ir.Nodes) { // make an array type corresponding the number of elements we have t := types.NewArray(n.Type().Elem(), n.Len) types.CalcSize(t) if ctxt == inNonInitFunction { // put everything into static array vstat := staticinit.StaticName(t) fixedlit(ctxt, initKindStatic, n, vstat, init) fixedlit(ctxt, initKindDynamic, n, vstat, init) // copy static to slice var_ = typecheck.AssignExpr(var_) name, offset, ok := staticinit.StaticLoc(var_) if !ok || name.Class != ir.PEXTERN { base.Fatalf("slicelit: %v", var_) } staticdata.InitSlice(name, offset, vstat.Linksym(), t.NumElem()) return } // recipe for var = []t{...} // 1. make a static array // var vstat [...]t // 2. assign (data statements) the constant part // vstat = constpart{} // 3. make an auto pointer to array and allocate heap to it // var vauto *[...]t = new([...]t) // 4. copy the static array to the auto array // *vauto = vstat // 5. for each dynamic part assign to the array // vauto[i] = dynamic part // 6. assign slice of allocated heap to var // var = vauto[:] // // an optimization is done if there is no constant part // 3. var vauto *[...]t = new([...]t) // 5. vauto[i] = dynamic part // 6. var = vauto[:] // if the literal contains constants, // make static initialized array (1),(2) var vstat ir.Node mode := getdyn(n, true) if mode&initConst != 0 && !isSmallSliceLit(n) { if ctxt == inInitFunction { vstat = readonlystaticname(t) } else { vstat = staticinit.StaticName(t) } fixedlit(ctxt, initKindStatic, n, vstat, init) } // make new auto *array (3 declare) vauto := typecheck.Temp(types.NewPtr(t)) // set auto to point at new temp or heap (3 assign) var a ir.Node if x := n.Prealloc; x != nil { // temp allocated during order.go for dddarg if !types.Identical(t, x.Type()) { panic("dotdotdot base type does not match order's assigned type") } a = initStackTemp(init, x, vstat) } else if n.Esc() == ir.EscNone { a = initStackTemp(init, typecheck.Temp(t), vstat) } else { a = ir.NewUnaryExpr(base.Pos, ir.ONEW, ir.TypeNode(t)) } appendWalkStmt(init, ir.NewAssignStmt(base.Pos, vauto, a)) if vstat != nil && n.Prealloc == nil && n.Esc() != ir.EscNone { // If we allocated on the heap with ONEW, copy the static to the // heap (4). We skip this for stack temporaries, because // initStackTemp already handled the copy. a = ir.NewStarExpr(base.Pos, vauto) appendWalkStmt(init, ir.NewAssignStmt(base.Pos, a, vstat)) } // put dynamics into array (5) var index int64 for _, value := range n.List { if value.Op() == ir.OKEY { kv := value.(*ir.KeyExpr) index = typecheck.IndexConst(kv.Key) if index < 0 { base.Fatalf("slicelit: invalid index %v", kv.Key) } value = kv.Value } a := ir.NewIndexExpr(base.Pos, vauto, ir.NewInt(index)) a.SetBounded(true) index++ // TODO need to check bounds? switch value.Op() { case ir.OSLICELIT: break case ir.OARRAYLIT, ir.OSTRUCTLIT: value := value.(*ir.CompLitExpr) k := initKindDynamic if vstat == nil { // Generate both static and dynamic initializations. // See issue #31987. k = initKindLocalCode } fixedlit(ctxt, k, value, a, init) continue } if vstat != nil && ir.IsConstNode(value) { // already set by copy from static value continue } // build list of vauto[c] = expr ir.SetPos(value) as := ir.NewAssignStmt(base.Pos, a, value) appendWalkStmt(init, orderStmtInPlace(typecheck.Stmt(as), map[string][]*ir.Name{})) } // make slice out of heap (6) a = ir.NewAssignStmt(base.Pos, var_, ir.NewSliceExpr(base.Pos, ir.OSLICE, vauto, nil, nil, nil)) appendWalkStmt(init, orderStmtInPlace(typecheck.Stmt(a), map[string][]*ir.Name{})) }
make初始化
makeOMAKESLICE
// go/src/cmd/compile/internal/walk/expr.go func walkExpr1(n ir.Node, init *ir.Nodes) ir.Node { switch n.Op() { ... case ir.OMAKESLICE: n := n.(*ir.MakeExpr) return walkMakeSlice(n, init) ... }
make
walkMakeSliceCapn.Esc() == ir.EscNoneNewArray()arr[:l]makeslicemakeslice64
// go/src/cmd/compile/internal/walk/builtin.go func walkMakeSlice(n *ir.MakeExpr, init *ir.Nodes) ir.Node { l := n.Len r := n.Cap if r == nil { r = safeExpr(l, init) l = r } ... if n.Esc() == ir.EscNone { if why := escape.HeapAllocReason(n); why != "" { base.Fatalf("%v has EscNone, but %v", n, why) } // var arr [r]T // n = arr[:l] i := typecheck.IndexConst(r) if i < 0 { base.Fatalf("walkExpr: invalid index %v", r) } ... t = types.NewArray(t.Elem(), i) // [r]T var_ := typecheck.Temp(t) appendWalkStmt(init, ir.NewAssignStmt(base.Pos, var_, nil)) // zero temp r := ir.NewSliceExpr(base.Pos, ir.OSLICE, var_, nil, l, nil) // arr[:l] // The conv is necessary in case n.Type is named. return walkExpr(typecheck.Expr(typecheck.Conv(r, n.Type())), init) } // n escapes; set up a call to makeslice. // When len and cap can fit into int, use makeslice instead of // makeslice64, which is faster and shorter on 32 bit platforms. len, cap := l, r fnname := "makeslice64" argtype := types.Types[types.TINT64] // Type checking guarantees that TIDEAL len/cap are positive and fit in an int. // The case of len or cap overflow when converting TUINT or TUINTPTR to TINT // will be handled by the negative range checks in makeslice during runtime. if (len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size()) && (cap.Type().IsKind(types.TIDEAL) || cap.Type().Size() <= types.Types[types.TUINT].Size()) { fnname = "makeslice" argtype = types.Types[types.TINT] } fn := typecheck.LookupRuntime(fnname) ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.TypePtr(t.Elem()), typecheck.Conv(len, argtype), typecheck.Conv(cap, argtype)) ptr.MarkNonNil() len = typecheck.Conv(len, types.Types[types.TINT]) cap = typecheck.Conv(cap, types.Types[types.TINT]) sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, len, cap) return walkExpr(typecheck.Expr(sh), init) }
maxImplicitStackVarSizeexplicit variable declarations implicit variables
var变量声明:=赋值操作10M64kb
p := new(T) p := &T{} s := make([]T, n) s := []byte("...")
// go/src/cmd/compile/internal/ir/cfg.go var ( // maximum size variable which we will allocate on the stack. // This limit is for explicit variable declarations like "var x T" or "x := ...". // Note: the flag smallframes can update this value. MaxStackVarSize = int64(10 * 1024 * 1024) // maximum size of implicit variables that we will allocate on the stack. // p := new(T) allocating T on the stack // p := &T{} allocating T on the stack // s := make([]T, n) allocating [n]T on the stack // s := []byte("...") allocating [n]byte on the stack // Note: the flag smallframes can update this value. MaxImplicitStackVarSize = int64(64 * 1024) // MaxSmallArraySize is the maximum size of an array which is considered small. // Small arrays will be initialized directly with a sequence of constant stores. // Large arrays will be initialized by copying from a static temp. // 256 bytes was chosen to minimize generated code + statictmp size. MaxSmallArraySize = int64(256) )
s := make([]T, n)64kbmakeslice
// go/src/runtime/slice.go func makeslice(et *_type, len, cap int) unsafe.Pointer { mem, overflow := math.MulUintptr(et.size, uintptr(cap)) if overflow || mem > maxAlloc || len < 0 || len > cap { // NOTE: Produce a 'len out of range' error instead of a // 'cap out of range' error when someone does make([]T, bignumber). // 'cap out of range' is true too, but since the cap is only being // supplied implicitly, saying len is clearer. // See golang.org/issue/4085. mem, overflow := math.MulUintptr(et.size, uintptr(len)) if overflow || mem > maxAlloc || len < 0 { panicmakeslicelen() } panicmakeslicecap() } return mallocgc(mem, et, true) }
lencaparray
// go/src/runtime/slice.go type slice struct { array unsafe.Pointer len int cap int } // 或者 // go/src/reflect/value.go // SliceHeader is the runtime representation of a slice. type SliceHeader struct { Data uintptr Len int Cap int }
切片的截取
从切片的运行时结构已经知道,切片底层数据是一个数组,切片本身只是持有一个指向改数组数据的指针。因此,当我们对切片进行截取操作时,新的切片仍然指向原切片的底层数据,当对原切片数据进行更新时,意味着新切片相同索引位置的数据也发生了变化:
slic := []int{1, 2, 3, 4, 5} slic1 := slic[:2] fmt.Printf("slic1: %v\n", slic1) slic[0] = 0 fmt.Printf("slic: %v\n", slic) fmt.Printf("slic1: %v\n", slic1) // slic1: [1 2] // slic: [0 2 3 4 5] // slic1: [0 2]
切片截取后,虽然底层数据没有发生变化,但指向的数据范围发生了变化,表现为截取后的切片长度、容量会相应发生变化:
- 长度为截取的范围
- 容量为截取起始位置到原切片末尾的范围
slic := []int{1, 2, 3, 4, 5} slic1 := slic[:2] slic2 := slic[2:] fmt.Printf("len(slic): %v\n", len(slic)) fmt.Printf("cap(slic): %v\n", cap(slic)) fmt.Printf("len(slic1): %v\n", len(slic1)) fmt.Printf("cap(slic1): %v\n", cap(slic1)) fmt.Printf("len(slic2): %v\n", len(slic2)) fmt.Printf("cap(slic2): %v\n", cap(slic2)) // len(slic): 5 // cap(slic): 5 // len(slic1): 2 // cap(slic1): 5 // len(slic2): 3 // cap(slic2): 3
data
slic := []int{1, 2, 3, 4, 5} s := slic // 等价于 s := slic[:]
当切片作为参数传递时,即使切片中包含大量的数据,也只是切片数据地址的拷贝,拷贝的成本是较低的。
切片的复制
copy
slic := []int{1, 2, 3, 4, 5} var slic1 []int copy(slic1, slic) fmt.Printf("slic: %p\n", slic) fmt.Printf("slic1: %p\n", slic1) // slic: 0xc0000aa030 // slic1: 0x0
slicecopy()memmove
// go/src/runtime/slice.go func slicecopy(toPtr unsafe.Pointer, toLen int, fromPtr unsafe.Pointer, fromLen int, width uintptr) int { if fromLen == 0 || toLen == 0 { return 0 } n := fromLen if toLen < n { n = toLen } ... if size == 1 { // common case worth about 2x to do here // TODO: is this still worth it with new memmove impl? *(*byte)(toPtr) = *(*byte)(fromPtr) // known to be a byte pointer } else { memmove(toPtr, fromPtr, size) } return n }
切片的扩容
growslice
func growslice(et *_type, old slice, cap int) slice { ... newcap := old.cap doublecap := newcap + newcap if cap > doublecap { newcap = cap } else { const threshold = 256 if old.cap < threshold { newcap = doublecap } else { // Check 0 < newcap to detect overflow // and prevent an infinite loop. for 0 < newcap && newcap < cap { // Transition from growing 2x for small slices // to growing 1.25x for large slices. This formula // gives a smooth-ish transition between the two. newcap += (newcap + 3*threshold) / 4 } // Set newcap to the requested cap when // the newcap calculation overflowed. if newcap <= 0 { newcap = cap } } } ... memmove(p, old.array, lenmem) return slice{p, old.len, newcap} }
从growslice的代码可以看出:
capold.capnewcapcapold.capnewcap += (newcap + 3*threshold) / 4
memmove()
示例:
var slic []int oldCap := cap(slic) for i := 0; i < 2048; i++ { slic = append(slic, i) newCap := cap(slic) grow := float32(newCap) / float32(oldCap) if newCap != oldCap { fmt.Printf("len(slic):%v cap(slic):%v grow:%v %p\n", len(slic), cap(slic), grow, slic) } oldCap = newCap } // len(slic):1 cap(slic):1 grow:+Inf 0xc0000140c0 // len(slic):2 cap(slic):2 grow:2 0xc0000140e0 // len(slic):3 cap(slic):4 grow:2 0xc000020100 // len(slic):5 cap(slic):8 grow:2 0xc00001e340 // len(slic):9 cap(slic):16 grow:2 0xc000026080 // len(slic):17 cap(slic):32 grow:2 0xc00007e000 // len(slic):33 cap(slic):64 grow:2 0xc000100000 // len(slic):65 cap(slic):128 grow:2 0xc000102000 // len(slic):129 cap(slic):256 grow:2 0xc000104000 // len(slic):257 cap(slic):512 grow:2 0xc000106000 // len(slic):513 cap(slic):1024 grow:2 0xc000108000 // len(slic):1025 cap(slic):1280 grow:1.25 0xc00010a000 // len(slic):1281 cap(slic):1696 grow:1.325 0xc000114000 // len(slic):1697 cap(slic):2304 grow:1.3584906 0xc00011e000
总结
SliceNewSlice()
type Slice struct { Elem *Type // element type }
slice
type slice struct { array unsafe.Pointer len int cap int }
makeslicecopyslicecopy()memmovegrowslicememmove()
您可能感兴趣的文章: