本文目录一览:

golang map源码浅析

golang 中 map的实现结构为: 哈希表 + 链表。 其中链表,作用是当发生hash冲突时,拉链法生成的结点。

可以看到, []bmap 是一个hash table, 每一个 bmap是我们常说的“桶”。 经过hash 函数计算出来相同的hash值, 放到相同的桶中。 一个 bmap中可以存放 8个 元素, 如果多出8个,则生成新的结点,尾接到队尾。

以上是只是静态文件 src/runtime/map.go 中的定义。 实际上编译期间会给它加料 ,动态地创建一个新的结构:

上图就是 bmap的内存模型, HOB Hash 指的就是 top hash。 注意到 key 和 value 是各自放在一起的,并不是 key/value/key/value/... 这样的形式。源码里说明这样的好处是在某些情况下可以省略掉 padding 字段,节省内存空间。

每个 bmap设计成 最多只能放 8 个 key-value 对 ,如果有第 9 个 key-value 落入当前的 bmap,那就需要再构建一个 bmap,通过 overflow 指针连接起来。

map创建方法:

我们实际上是通过调用的 makemap ,来创建map的。实际工作只是初始化了hmap中的各种字段,如:设置B的大小, 设置hash 种子 hash 0.

注意 :

makemap 返回是*hmap 指针, 即 map 是引用对象, 对map的操作会影响到结构体内部 。

使用方式

对应的是下面两种方法

map的key的类型,实现了自己的hash 方式。每种类型实现hash函数方式不一样。

key 经过哈希计算后得到hash值,共 64 个 bit 位。 其中后B 个bit位置, 用来定位当前元素落在哪一个桶里, 高8个bit 为当前 hash 值的top hash。 实际上定位key的过程是一个双重循环的过程, 外层循环遍历 所有的overflow, 内层循环遍历 当前bmap 中的 8个元素 。

举例说明: 如果当前 B 的值为 5, 那么buckets 的长度 为 2^5 = 32。假设有个key 经过hash函数计算后,得到的hash结果为:

外层遍历bucket 中的链表

内层循环遍历 bmap中的8个 cell

建议先不看此部分内容,看完后续 修改 map中元素 - 扩容 操作后 再回头看此部分内容。

扩容前的数据:

等量扩容后的数据:

等量扩容后,查找方式和原本相同, 不多做赘述。

两倍扩容后的数据

两倍扩容后,oldbuckets 的元素,可能被分配成了两部分。查找顺序如下:

此处只分析 mapaccess1 ,。 mapaccess2 相比 mapaccess1 多添加了是否找到的bool值, 有兴趣可自行看一下。

使用方式:

步骤如下:

扩容条件 :

扩容的标识 : h.oldbuckets != nil

假设当前定位到了新的buckets的3号桶中,首先会判断oldbuckets中的对应的桶有没有被搬迁过。 如果搬迁过了,不需要看原来的桶了,直接遍历新的buckets的3号桶。

扩容前:

等量扩容结果

双倍扩容会将old buckets上的元素分配到x, y两个部key 1 B == 0 分配到x部分,key 1 B == 1 分配到y部分

注意: 当前只对双倍扩容描述, 等量扩容只是重新填充了一下元素, 相对位置没有改变。

假设当前map 的B == 5,原本元素经过hash函数计算的 hash 值为:

因为双倍扩容之后 B = B + 1,此时B == 6。key 1 B == 1, 即 当前元素rehash到高位,新buckets中 y 部分. 否则 key 1 B == 0 则rehash到低位,即x 部分。

使用方式:

可以看到,每一遍历生成迭代器的时候,会随机选取一个bucket 以及 一个cell开始。 从前往后遍历,再次遍历到起始位置时,遍历完成。

Golang database/sql源码分析

Gorm是Go语言开发用的比较多的一个ORM。它的功能比较全:

但是这篇文章中并不会直接看Gorm的源码,我们会先从database/sql分析。原因是Gorm也是基于这个包来封装的一些功能。所以只有先了解了database/sql包才能更加好的理解Gorm源码。

database/sql 其实也是一个对于mysql驱动的上层封装。”github.com/go-sql-driver/mysql”就是一个对于mysql的驱动,database/sql 就是在这个基础上做的基本封装包含连接池的使用

下面这个是最基本的增删改查操作

操作分下面几个步骤:

因为Gorm的连接池就是使用database/sql包中的连接池,所以这里我们需要学习一下包里的连接池的源码实现。其实所有连接池最重要的就是连接池对象、获取函数、释放函数下面来看一下database/sql中的连接池。

DB对象

获取方法

释放连接方法

连接池的实现有很多方法,在database/sql包中使用的是chan阻塞 使用map记录等待列表,等到有连接释放的时候再把连接传入等待列表中的chan 不在阻塞返回连接。

之前我们看到的Redigo是使用一个chan 来阻塞,然后释放的时候放入空闲列表,在往这一个chan中传入struct{}{},让程序继续 获取的时候再从空闲列表中获取。并且使用的是链表的结构来存储空闲列表。

database/sql 是对于mysql驱动的封装,然而Gorm则是对于database/sql的再次封装。让我们可以更加简单的实现对于mysql数据库的操作。

golang性能测试框架k6源码分析

k6是新兴的性能测试框架,比肩jmeter,另外测试脚本使用js,更加适合自动化的架构。

k6启动的框架是使用golang的cli标准框架cobra,入口函数

进入cobra框架后,我们直接查看getRunCmd,这个是命令run的入口,主要工作都是从这里开始。

重点关注初始化Runner,这个是通过js脚本,使用goja库解析后,生成的实际执行单元。

进入js目录,查看Runner的结构,runner.go

Runner有一些配置属性,另外还有方法,方法用lib.Runner的接口进行规范。

Runner有一个NewVU方法,里面定义了连接参数,实现api测试

返回主函数,在初始化完成Runner后,启动调度器,以及做结果收集

最终封装成一个engine

启动测试

golang unicode/utf8源码分析

包 utf-8 实现的功能和常量用于文章utf8编码,包含runes和utf8字节序列的转换功能.在unicode中,一个中文占两个字节,utf-8中一个中文占三个字节,golang默认的编码是utf-8编码,因此默认一个中文占三个字节,但是golang中的字符串底层实际上是一个byte数组.

Output:

RuneSelf该值的字节码值为128,在判断是否是常规的ascii码是使用。hicb字节码值为191. FF 的对应的字节码为255。

计算字符串中的rune数量,原理:首先取出字符串的码值,然后判断是不是个小于128的,如果是小于则直接continue.rune个数++.

如果是个十六进制f1.的则是无效字符,直接continue.rune个数++,也就是说一个无效的字符也当成一个字长为1的rune.如果字符的码值在first列表中的值和7按位的结果为其字长,比如上面示例中的 钢 。其字长为三位,第一位的值为 233 .二进制形式为 11101001 ;与7按位与后的值为0.从acceptRanges中取出的结果为{locb, hicb}。也就是标识 ox80 到 0xbf 之间的值。而结果n也就是直接size+3跳过3个字节后,rune个数++。其他函数的处理流程差不多,不再过多叙述。

示例:

ValidString返回值表明参数字符串是否是一个合法的可utf8编码的字符串。

RuneCount返回参数中包含的rune数量,第一个例子中将 utf8.RuneCountInString ,改成该方法调用,返回的结果相同。错误的和短的被当成一个长一字节的rune.单个字符 H 就表示一个长度为1字节的rune.

该函数标识参数是否以一个可编码的rune开头,上面的例子中,因为字符串是以一个ascii码值在0-127内的字符开头,所以在执行

first[p[0]] 时,取到的是 p[0] 是72,在first列表中,127之前的值都相同都为 0xF0 ,十进制标识为240,与7按位与后值为0,所以,直接返回 true .

和FullRune类似,只是参数为字符串形式