Map底层数据结构
type hmap struct {
count int // map中元素个数,len()函数返回
flags uint8
B uint8 // map中的bucket的对数值,真实bucket数为2 ^ B个
noverflow uint16 // 溢出bucket的数量
hash0 uint32 // hash seed
buckets unsafe.Pointer // Buckets数组的指针,count = 0时,值为nil
oldbuckets unsafe.Pointer // 前bucket数组指针,只在map扩容过程中非nil
nevacuate uintptr // map扩容过程中,记录已迁移bucket的计数值(小于该值已转移)
extra *mapextra // optional fields
}
Map底层数据结构有3个核心字段:
- count: 记录当前map元素个数
- B: 记录当前map的bucket数
- buckets:当前buckets数组地址。元素经过哈希后,先确定落到哪个bucket上
Bucket底层数据结构
type bmap struct {
tophash [bucketCnt]uint8 // bucketCnt默认值为8
// Followed by bucketCnt keys and then bucketCnt elems.
// NOTE: packing all the keys together and then all the elems together makes the
// code a bit more complicated than alternating key/elem/key/elem/... but it allows
// us to eliminate padding which would be needed for, e.g., map[int64]int8.
// Followed by an overflow pointer.
}
Bucket底层数据结构:
- tophash: 记录哈希值的高位部分;(哈希值相同的key,确切的讲是低位相同,会被存储到同一个bucket里,bucket中的tophash数组记录这些哈希值的高位部分,以便后续匹配)
- 在tophash数组后存在一段注释,大致意思为:
- bucket中的数据存储,使用 key/key/key…value/value/value的方式;虽然增加了代码复杂度,但可以对齐内存,节省空间
- bucket后面会有一个溢出指针,指向下一个bucket
Map创建
func makemap(t *maptype, hint int, h *hmap) *hmap {
mem, overflow := math.MulUintptr(uintptr(hint), t.bucket.size) // 申请内存大小
if overflow || mem > maxAlloc {
hint = 0
}
// initialize Hmap
if h == nil {
h = new(hmap)
}
h.hash0 = fastrand()
B := uint8(0)
for overLoadFactor(hint, B) { // 计算B的大小
B++
}
h.B = B
if h.B != 0 {
var nextOverflow *bmap
h.buckets, nextOverflow = makeBucketArray(t, h.B, nil) // 分配bucket Array内存空间
if nextOverflow != nil {
h.extra = new(mapextra)
h.extra.nextOverflow = nextOverflow
}
}
return h
}
bucket计数
// 确定bucket数目因子B,是否可以承载元素个数count
// Args:
// count: map元素个数
// B: map中bucket数目因子,bucket数为 2 ^ B
// Return:
// 是否可以承载
//
// 补充:
// bucketCnt = 8
// loadFactorNum = 13
// loadFactorDen = 2
// bucketShirt(B) => 1 << B
func overLoadFactor(count int, B uint8) bool {
return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
}
需要注意的是,golang中:
- 每个bucket可以存放8个map元素
- golang默认的承载因子是6.5,即一个bucket平均可以存放6.5个元素,再多需要扩容
所以函数可以理解为:
count > bucketCntloadFactorNum*(bucketShift(B)/loadFactorDen)loadFactorNum/loadFactorDen * bucketShift(B)loadFactorNum/loadFactorDenbucketShift(B)
bucket数组初始化
// 创建bucket列表
// Args:
// b: map.B
func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets unsafe.Pointer, nextOverflow *bmap) {
base := bucketShift(b)
nbuckets := base // bucket 数
if b >= 4 {
nbuckets += bucketShift(b - 4)
sz := t.bucket.size * nbuckets
up := roundupsize(sz)
if up != sz {
nbuckets = up / t.bucket.size
}
}
if dirtyalloc == nil {
buckets = newarray(t.bucket, int(nbuckets))
} else {
buckets = dirtyalloc
size := t.bucket.size * nbuckets
if t.bucket.ptrdata != 0 {
memclrHasPointers(buckets, size)
} else {
memclrNoHeapPointers(buckets, size)
}
}
if base != nbuckets {
nextOverflow = (*bmap)(add(buckets, base*uintptr(t.bucketsize)))
last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.bucketsize)))
last.setoverflow(t, (*bmap)(buckets))
}
return buckets, nextOverflow
}
Map获取元素
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
// map为nil或者没有元素时,返回零值
if h == nil || h.count == 0 {
return unsafe.Pointer(&zeroVal[0])
}
// 并发读写
if h.flags&hashWriting != 0 {
throw("concurrent map read and map write")
}
// 获取key的哈希值,找到对应的bucket
hash := t.hasher(key, uintptr(h.hash0))
m := bucketMask(h.B)
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
// 找到哈希值的高位(被哈希到同一个bucket的多个元素,通过哈希值高位不同匹配元素)
top := tophash(hash)
// 下面这个loop
// 1. 从当前bucket中查找匹配key值的value
// 2. 如果当前bucket没有,则从overflow(t)中查找,overflow为bucket的溢出桶。当一个bucket的坑位(8个)不够存储当前哈希值的元素,会新建用溢出bucket,通过链表的方式连接(**链地址法解决哈希冲突**)
bucketloop:
for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
if b.tophash[i] == emptyRest {
break bucketloop
}
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
if t.indirectkey() {
k = *((*unsafe.Pointer)(k))
}
if t.key.equal(key, k) {
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
if t.indirectelem() {
e = *((*unsafe.Pointer)(e))
}
return e
}
}
}
return unsafe.Pointer(&zeroVal[0])
}
map获取元素值的步骤:
- 计算key的哈希值
- 通过哈希值,找到key所在的bucket
- 计算哈希值的高位,并在bucket中查找匹配的key的位置
3.1 如果匹配成功,则返回key对应的value
3.2 如果匹配不成功,则从overflow中继续查找,重复第三步
Map赋值
map赋值和map查询有类似步骤
- 找到key对应插入的位置
- 如果找到相同的key,update值
- 如果找不到相同的key对应的map,需要插入新元素
- 此时会判断是否需要扩容,扩容有两个条件:
- 一是count + 1后,bucket平均负载因子大于6.5
- 二是如果存在大量的溢出bucket
- 此时会判断是否需要扩容,扩容有两个条件:
Map扩容
func hashGrow(t *maptype, h *hmap) {
bigger := uint8(1)
// 判断是增量扩容,还是等量扩容
if !overLoadFactor(h.count+1, h.B) {
bigger = 0
h.flags |= sameSizeGrow
}
oldbuckets := h.buckets
newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)
flags := h.flags &^ (iterator | oldIterator)
if h.flags&iterator != 0 {
flags |= oldIterator
}
h.B += bigger
h.flags = flags
h.oldbuckets = oldbuckets
h.buckets = newbuckets
h.nevacuate = 0
h.noverflow = 0
if h.extra != nil && h.extra.overflow != nil {
if h.extra.oldoverflow != nil {
throw("oldoverflow is not nil")
}
h.extra.oldoverflow = h.extra.overflow
h.extra.overflow = nil
}
if nextOverflow != nil {
if h.extra == nil {
h.extra = new(mapextra)
}
h.extra.nextOverflow = nextOverflow
}
}
// the actual copying of the hash table data is done incrementally
// by growWork() and evacuate().
hashGrow
- 等量扩容:bucket负载率不高,但是溢出bucket过多(当个bucket的overflow较多),此时需要重新排列bucket中的元素,使元素分布更紧凑
- 增量扩容:bucket负载较高(>6.5),此时需要新增B = B + 1, 需要新增bucket数
hashGrowflagsbucket arrayoldbucketsmap growWork() and evacuate()