来源于 公众号: 脑子进煎鱼了 ,作者陈煎鱼。
我们在写代码的时候,有时候会想这个变量到底分配到哪里了?这时候可能会有人说,在栈上,在堆上。信我准没错…
但从结果上来讲你还是一知半解,这可不行,万一被人懵了呢。今天我们一起来深挖下 Go 在这块的奥妙,自己动手丰衣足食!
问题
type User struct {
ID int64
Name string
Avatar string
}
func GetUserInfo() *User {
return &User{ID: 13746731, Name: "EDDYCJY", Avatar: "https://avatars0.githubusercontent.com/u/13746731"}
}
func main() {
_ = GetUserInfo()
}
开局就是一把问号,带着问题进行学习。请问 main 调用 GetUserInfo 后返回的 &User{…}。这个变量是分配到栈上了呢,还是分配到堆上了?
什么是堆/栈
在这里并不打算详细介绍堆栈,仅简单介绍本文所需的基础知识。如下:
- 堆(Heap):一般来讲是人为手动进行管理,手动申请、分配、释放。一般所涉及的内存大小并不定,一般会存放较大的对象。另外其分配相对慢,涉及到的指令动作也相对多。
- 栈(Stack):由编译器进行管理,自动申请、分配、释放。一般不会太大,我们常见的函数参数(不同平台允许存放的数量不同),局部变量等等都会存放在栈上。
今天我们介绍的 Go 语言,它的堆栈分配是通过 Compiler 进行分析,GC 去管理的,而对其的分析选择动作就是今天探讨的重点。
什么是逃逸分析
在编译程序优化理论中,逃逸分析是一种确定指针动态范围的方法,简单来说就是分析在程序的哪些地方可以访问到该指针。
通俗地讲,逃逸分析就是确定一个变量要放堆上还是栈上,规则如下:
- 是否有在**其他地方(非局部)**被引用。只要有可能被引用了,那么它一定分配到堆上。否则分配到栈上。
- 即使没有被外部引用,但对象过大,无法存放在栈区上。依然有可能分配到堆上。
对此你可以理解为,逃逸分析是编译器用于决定变量分配到堆上还是栈上的一种行为。
在什么阶段确立逃逸
在编译阶段确立逃逸,注意并不是在运行时。
为什么需要逃逸
这个问题我们可以反过来想,如果变量都分配到堆上了会出现什么事情?例如:
- 垃圾回收(GC)的压力不断增大。
- 申请、分配、回收内存的系统开销增大(相对于栈)。
- 动态分配产生一定量的内存碎片。
简单来说,就是频繁申请并分配堆内存是有一定 “代价” 的。会影响应用程序运行的效率,间接影响到整体系统。
因此 “按需分配” 最大限度的灵活利用资源,才是正确的治理之道。这就是为什么需要逃逸分析的原因,你觉得呢?
怎么确定是否逃逸
-gcflags
-m 会打印出逃逸分析的优化策略,实际上最多总共可以用 4 个 -m,但是信息量较大,一般用 1 个就可以了。
-l 会禁用函数内联,在这里禁用掉 inline 能更好的观察逃逸情况,减少干扰。
$ go build -gcflags '-m -l' main.go
第二,通过反编译命令查看
$ go tool compile -S main.go
注:可以通过 go tool compile -help 查看所有允许传递给编译器的标识参数。
逃逸案例
案例一:指针
第一个案例是一开始抛出的问题,现在你再看看,想想,如下:
type User struct {
ID int64
Name string
Avatar string
}
func GetUserInfo() *User {
return &User{ID: 13746731, Name: "EDDYCJY", Avatar: "https://avatars0.githubusercontent.com/u/13746731"}
}
func main() {
_ = GetUserInfo()
}
执行命令观察一下,如下:
$ go build -gcflags '-m -l' main.go
# command-line-arguments
./main.go:10:54: &User literal escapes to heap
&User
$ go tool compile -S main.go
"".GetUserInfo STEXT size=190 args=0x8 locals=0x18
0x0000 00000 (main.go:9) TEXT "".GetUserInfo(SB), $24-8
...
0x0028 00040 (main.go:10) MOVQ AX, (SP)
0x002c 00044 (main.go:10) CALL runtime.newobject(SB)
0x0031 00049 (main.go:10) PCDATA $2, $1
0x0031 00049 (main.go:10) MOVQ 8(SP), AX
0x0036 00054 (main.go:10) MOVQ $13746731, (AX)
0x003d 00061 (main.go:10) MOVQ $7, 16(AX)
0x0045 00069 (main.go:10) PCDATA $2, $-2
0x0045 00069 (main.go:10) PCDATA $0, $-2
0x0045 00069 (main.go:10) CMPL runtime.writeBarrier(SB), $0
0x004c 00076 (main.go:10) JNE 156
0x004e 00078 (main.go:10) LEAQ go.string."EDDYCJY"(SB), CX
...
runtime.newobject
分析结果
这是因为 GetUserInfo() 返回的是指针对象,引用被返回到了方法之外了。
因此编译器会把该对象分配到堆上,而不是栈上。
否则方法结束之后,局部变量就被回收了,岂不是翻车。所以最终分配到堆上是理所当然的
再想想
那你可能会想,那就是所有指针对象,都应该在堆上?
并不。如下:
func main() {
str := new(string)
*str = "EDDYCJY"
}
你想想这个对象会分配到哪里?如下:
$ go build -gcflags '-m -l' main.go
# command-line-arguments
./main.go:4:12: main new(string) does not escape
显然,该对象分配到栈上了。很核心的一点就是它有没有被作用域之外所引用,而这里作用域仍然保留在 main 中,因此它没有发生逃逸。
案例二:未确定类型
func main() {
str := new(string)
*str = "EDDYCJY"
fmt.Println(str)
}
执行命令观察一下,如下:
$ go build -gcflags '-m -l' main.go
# command-line-arguments
./main.go:9:13: str escapes to heap
./main.go:6:12: new(string) escapes to heap
./main.go:9:13: main ... argument does not escape
通过查看分析结果,可得知 str 变量逃到了堆上,也就是该对象在堆上分配。但上个案例时它还在栈上,我们也就 fmt 输出了它而已。这…到底发生了什么事?
分析结果
fmt.Println(str)
func Println(a ...interface{}) (n int, err error)
通过对其分析,可得知当形参为 interface 类型时,在编译阶段编译器无法确定其具体的类型。因此会产生逃逸,最终分配到堆上。
reflect.TypeOf(arg).Kind()
案例三、泄露参数
type User struct {
ID int64
Name string
Avatar string
}
func GetUserInfo(u *User) *User {
return u
}
func main() {
_ = GetUserInfo(&User{ID: 13746731, Name: "EDDYCJY", Avatar: "https://avatars0.githubusercontent.com/u/13746731"})
}
执行命令观察一下,如下:
$ go build -gcflags '-m -l' main.go
# command-line-arguments
./main.go:9:18: leaking param: u to result ~r1 level=0
./main.go:14:63: main &User literal does not escape
&User
注意:逃逸分析目的是判断当前方法里的变量会不会被其它方法使用(读写),这个例子里面,直接就返回了,显然没有真正使用。
再想想
那你再想想怎么样才能让它分配到堆上?结合案例一,举一反三。修改如下:
type User struct {
ID int64
Name string
Avatar string
}
func GetUserInfo(u User) *User {
return &u
}
func main() {
_ = GetUserInfo(User{ID: 13746731, Name: "EDDYCJY", Avatar: "https://avatars0.githubusercontent.com/u/13746731"})
}
执行命令观察一下,如下:
$ go build -gcflags '-m -l' main.go
# command-line-arguments
./main.go:10:9: &u escapes to heap
./main.go:9:18: moved to heap: u
注意,这里和上面例子3不一样,这里逃逸的是 u ! main函数里的匿名结构体User一定不会逃逸,因为调用GetUserInfo的时候是传的结构体值,深拷贝了!
u之所以会逃逸,是因为取地址返回了!! 这是一定会发生逃逸的,不管返回的值有没有用。
原因是函数GetUserInfo返回一个对u的引用,所以u不能在栈中分配,否则当函数返回时,引用会指向何处呢?
于是它逃逸到了堆中。其实执行完GetUserInfo返回到main函数中后,main函数丢弃了这个引用而不是解除引用,但是Go的逃逸分析还不够机智去识别这种情况。
总结
我们得出了指针必然发生逃逸的三种情况(go version go1.13.4 darwin/amd64):
在某个函数中new或字面量创建出的变量,将其指针作为函数返回值,则该变量一定发生逃逸(构造函数返回的指针变量一定逃逸);case1:
- 被已经逃逸的变量引用的指针,一定发生逃逸;
- 被指针类型的slice、map和chan引用的指针,一定发生逃逸;
同时我们也得出一些必然不会逃逸的情况:case2
- 指针被未发生逃逸的变量引用;
- 仅仅在函数内对变量做取址操作,而未将指针传出;
有一些情况可能发生逃逸,也可能不会发生逃逸:case3
将指针作为入参传给别的函数;
这里还是要看指针在被传入的函数中的处理过程,如果发生了上边一定逃逸的条件,则会逃逸;否则不会逃逸;
在本文我给你介绍了逃逸分析的概念和规则,并列举了一些例子加深理解。但实际肯定远远不止这些案例,你需要做到的是掌握方法,遇到再看就好了。除此之外你还需要注意:
go build -gcflags '-m -l'
这块的知识点。我的建议是适当了解,但没必要硬记,因为 Go 语言每次升级都有可能会改。靠基础知识点加命令调试观察就好了。