有关goroutine的问题,大多数集中在
- 它跟线程有啥区别?原理是啥?
- 都说他好,他好在哪里?
- 使用上面有啥注意的?
等等,或许我们还有更多疑问,但是先从最基础的开始吧
package main
func hello(msg string) {
println(msg)
}
func main() {
go hello("hello world") // 7-8 行
}
其编译后的形式为:
"".main STEXT size=91 args=0x0 locals=0x28
0x0000 00000 (main.go:7) TEXT "".main(SB), ABIInternal, $40-0
0x0000 00000 (main.go:7) MOVQ (TLS), CX
0x0009 00009 (main.go:7) CMPQ SP, 16(CX)
0x000d 00013 (main.go:7) JLS 84
0x000f 00015 (main.go:7) SUBQ $40, SP
0x0013 00019 (main.go:7) MOVQ BP, 32(SP)
0x0018 00024 (main.go:7) LEAQ 32(SP), BP
0x001d 00029 (main.go:7) FUNCDATA $0, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x001d 00029 (main.go:7) FUNCDATA $1, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x001d 00029 (main.go:7) FUNCDATA $3, gclocals·9fb7f0986f647f17cb53dda1484e0f7a(SB)
0x001d 00029 (main.go:8) PCDATA $2, $0
0x001d 00029 (main.go:8) PCDATA $0, $0
0x001d 00029 (main.go:8) MOVL $16, (SP)
0x0024 00036 (main.go:8) PCDATA $2, $1
0x0024 00036 (main.go:8) LEAQ "".hello·f(SB), AX
0x002b 00043 (main.go:8) PCDATA $2, $0
0x002b 00043 (main.go:8) MOVQ AX, 8(SP)
0x0030 00048 (main.go:8) PCDATA $2, $1
0x0030 00048 (main.go:8) LEAQ go.string."hello world"(SB), AX
0x0037 00055 (main.go:8) PCDATA $2, $0
0x0037 00055 (main.go:8) MOVQ AX, 16(SP)
0x003c 00060 (main.go:8) MOVQ $11, 24(SP)
0x0045 00069 (main.go:8) CALL runtime.newproc(SB)
0x004a 00074 (main.go:9) MOVQ 32(SP), BP
0x004f 00079 (main.go:9) ADDQ $40, SP
0x0053 00083 (main.go:9) RET
0x0054 00084 (main.go:9) NOP
0x0054 00084 (main.go:7) PCDATA $0, $-1
0x0054 00084 (main.go:7) PCDATA $2, $-1
0x0054 00084 (main.go:7) CALL runtime.morestack_noctxt(SB)
0x0059 00089 (main.go:7) JMP 0
0x0000 65 48 8b 0c 25 00 00 00 00 48 3b 61 10 76 45 48 eH..%....H;a.vEH
0x0010 83 ec 28 48 89 6c 24 20 48 8d 6c 24 20 c7 04 24 ..(H.l$ H.l$ ..$
0x0020 10 00 00 00 48 8d 05 00 00 00 00 48 89 44 24 08 ....H......H.D$.
0x0030 48 8d 05 00 00 00 00 48 89 44 24 10 48 c7 44 24 H......H.D$.H.D$
0x0040 18 0b 00 00 00 e8 00 00 00 00 48 8b 6c 24 20 48 ..........H.l$ H
0x0050 83 c4 28 c3 e8 00 00 00 00 eb a5 ..(........
rel 5+4 t=16 TLS+0
rel 39+4 t=15 "".hello·f+0
rel 51+4 t=15 go.string."hello world"+0
rel 70+4 t=8 runtime.newproc+0
rel 85+4 t=8 runtime.morestack_noctxt+0
runtime.newproc
创建一个新的g用来运行fn,带有一个siz字节大小的参数
然后将它放到g的等待运行的队列中
编辑器会把一个go语句变成该函数的调用。
//go:nosplit
func newproc(siz int32, fn *funcval) {
// 从 fn 的地址增加一个指针的长度,从而获取第一参数地址
argp := add(unsafe.Pointer(&fn), sys.PtrSize)
// 获取当前的运行的g
gp := getg()
// getcallerpc返回其调用方的程序计数器(PC)。用于存放下一条指令所在单元的地址的地方。
pc := getcallerpc()
// 用 g0 系统栈创建 Goroutine 对象
// 传递的参数包括 fn 函数入口地址, argp 参数起始地址, siz 参数长度, gp(g0),调用方 pc(Goroutine)
systemstack(func() {
// 原型:func newproc1(fn *funcval, argp *uint8, narg int32, callergp *g, callerpc uintptr)
// 创建一个新的g,运行fn,其中narg个字节的参数从argp开始。
// callerpc是创建它的go语句的地址。新g放入g等待运行的队列中。
newproc1(fn, (*uint8)(argp), siz, gp, pc)
})
}
Go的m也有两类栈:一类是系统栈(systemstack),主要用于运行runtime的程序逻辑;另一类是g栈,用于运行g的程序逻辑。后面再说。现在我们知道newproc是在系统栈,因为我们下面要创建一个新的g来运行fn。
而newproc1才是创建一个新的g来运行fn的,我们仔细看一下参数,argp是go func语句中第一个参数开始的地址,narg是参数的长度大小,callergp是我们的g0关于什么是g0,后面再说。callerpc是该调用结束后下一步指令地址:
func newproc1(fn *funcval, argp *uint8, narg int32, callergp *g, callerpc uintptr) {
_g_ := getg()
if fn == nil {
_g_.m.throwing = -1 // do not dump full stacks
throw("go of nil func value")
}
_g_.m.locks++ // disable preemption because it can be holding p in a local var
siz := narg
siz = (siz + 7) &^ 7
// We could allocate a larger initial stack if necessary.
// Not worth it: this is almost always an error.
// 4*sizeof(uintreg): extra space added below
// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
if siz >= _StackMin-4*sys.RegSize-sys.RegSize {
throw("newproc: function arguments too large for new goroutine")
}
_p_ := _g_.m.p.ptr() // 获取一个p
newg := gfget(_p_) // 在p 获得一个新的 g
// 初始化阶段,gfget 是不可能找到 g 的
// 也可能运行中本来就已经耗尽了
if newg == nil { // 没有获取到g,就要新创建一个g
newg = malg(_StackMin) // 创建一个拥有 _StackMin 大小的栈的 g
casgstatus(newg, _Gidle, _Gdead) // 将新创建的 g 从 _Gidle 更新为 _Gdead 状态
allgadd(newg) // 将 Gdead 状态的 g 添加到 allg,这样 GC 不会扫描未初始化的栈
}
if newg.stack.hi == 0 {
throw("newproc1: newg missing stack")
}
if readgstatus(newg) != _Gdead {
throw("newproc1: new g is not Gdead")
}
totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame
totalSize += -totalSize & (sys.SpAlign - 1) // align to spAlign
sp := newg.stack.hi - totalSize
spArg := sp
if usesLR {
// caller's LR
*(*uintptr)(unsafe.Pointer(sp)) = 0
prepGoExitFrame(sp)
spArg += sys.MinFrameSize
}
if narg > 0 {
memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
// This is a stack-to-stack copy. If write barriers
// are enabled and the source stack is grey (the
// destination is always black), then perform a
// barrier copy. We do this *after* the memmove
// because the destination stack may have garbage on
// it.
if writeBarrier.needed && !_g_.m.curg.gcscandone {
f := findfunc(fn.fn)
stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
if stkmap.nbit > 0 {
// We're in the prologue, so it's always stack map index 0.
bv := stackmapdata(stkmap, 0)
bulkBarrierBitmap(spArg, spArg, uintptr(bv.n)*sys.PtrSize, 0, bv.bytedata)
}
}
}
memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
newg.sched.sp = sp
newg.stktopsp = sp
newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
newg.sched.g = guintptr(unsafe.Pointer(newg))
gostartcallfn(&newg.sched, fn)
newg.gopc = callerpc
newg.ancestors = saveAncestors(callergp)
newg.startpc = fn.fn
if _g_.m.curg != nil {
newg.labels = _g_.m.curg.labels
}
if isSystemGoroutine(newg, false) {
atomic.Xadd(&sched.ngsys, +1)
}
newg.gcscanvalid = false
casgstatus(newg, _Gdead, _Grunnable)
if _p_.goidcache == _p_.goidcacheend {
// Sched.goidgen is the last allocated id,
// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
// At startup sched.goidgen=0, so main goroutine receives goid=1.
_p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
_p_.goidcache -= _GoidCacheBatch - 1
_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
}
newg.goid = int64(_p_.goidcache)
_p_.goidcache++
if raceenabled {
newg.racectx = racegostart(callerpc)
}
if trace.enabled {
traceGoCreate(newg, newg.startpc)
}
// 将这里新创建的 g 放入 p 的本地队列或直接放入全局队列
// true 表示放入执行队列的下一个,false 表示放入队尾
runqput(_p_, newg, true)
if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && mainStarted {
wakep()
}
_g_.m.locks--
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
_g_.stackguard0 = stackPreempt
}
}
也就是说,刚开始的时候,p上并没有可以使用的g,所以创建了一个具有很少栈容量的g.
// 分配一个新的g,其堆栈足以容纳stacksize字节。
func malg(stacksize int32) *g {
newg := new(g)
if stacksize >= 0 {
stacksize = round2(_StackSystem + stacksize)
systemstack(func() {
newg.stack = stackalloc(uint32(stacksize))
})
newg.stackguard0 = newg.stack.lo + _StackGuard
newg.stackguard1 = ^uintptr(0)
}
return newg
}
分配的g是一个结构体指针,如果stacksize大于零,还将分配stack堆栈,该结构体具体内容如下:
type g struct {
// Stack parameters.
// stack describes the actual stack memory: [stack.lo, stack.hi).
// stackguard0 is the stack pointer compared in the Go stack growth prologue.
// It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption.
// stackguard1 is the stack pointer compared in the C stack growth prologue.
// It is stack.lo+StackGuard on g0 and gsignal stacks.
// It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash).
stack stack // offset known to runtime/cgo
stackguard0 uintptr // offset known to liblink
stackguard1 uintptr // offset known to liblink
_panic *_panic // innermost panic - offset known to liblink
_defer *_defer // innermost defer
m *m // current m; offset known to arm liblink
sched gobuf
syscallsp uintptr // if status==Gsyscall, syscallsp = sched.sp to use during gc
syscallpc uintptr // if status==Gsyscall, syscallpc = sched.pc to use during gc
stktopsp uintptr // expected sp at top of stack, to check in traceback
param unsafe.Pointer // passed parameter on wakeup
atomicstatus uint32
stackLock uint32 // sigprof/scang lock; TODO: fold in to atomicstatus
goid int64
schedlink guintptr
waitsince int64 // approx time when the g become blocked
waitreason waitReason // if status==Gwaiting
preempt bool // preemption signal, duplicates stackguard0 = stackpreempt
paniconfault bool // panic (instead of crash) on unexpected fault address
preemptscan bool // preempted g does scan for gc
gcscandone bool // g has scanned stack; protected by _Gscan bit in status
gcscanvalid bool // false at start of gc cycle, true if G has not run since last scan; TODO: remove?
throwsplit bool // must not split stack
raceignore int8 // ignore race detection events
sysblocktraced bool // StartTrace has emitted EvGoInSyscall about this goroutine
sysexitticks int64 // cputicks when syscall has returned (for tracing)
traceseq uint64 // trace event sequencer
tracelastp puintptr // last P emitted an event for this goroutine
lockedm muintptr
sig uint32
writebuf []byte
sigcode0 uintptr
sigcode1 uintptr
sigpc uintptr
gopc uintptr // pc of go statement that created this goroutine
ancestors *[]ancestorInfo // ancestor information goroutine(s) that created this goroutine (only used if debug.tracebackancestors)
startpc uintptr // pc of goroutine function
racectx uintptr
waiting *sudog // sudog structures this g is waiting on (that have a valid elem ptr); in lock order
cgoCtxt []uintptr // cgo traceback context
labels unsafe.Pointer // profiler labels
timer *timer // cached timer for time.Sleep
selectDone uint32 // are we participating in a select and did someone win the race?
// Per-G GC state
// gcAssistBytes is this G's GC assist credit in terms of
// bytes allocated. If this is positive, then the G has credit
// to allocate gcAssistBytes bytes without assisting. If this
// is negative, then the G must correct this by performing
// scan work. We track this in bytes to make it fast to update
// and check for debt in the malloc hot path. The assist ratio
// determines how this corresponds to scan work debt.
gcAssistBytes int64
}
round2(_StackSystem + stacksize)
newg.stackguard0 = newg.stack.lo + _StackGuard
newg.stackguard1 = ^uintptr(0)
_Gidle_Gdead
var (
allgs []*g
allglock mutex
)
func allgadd(gp *g) {
if readgstatus(gp) == _Gidle {
throw("allgadd: bad status Gidle")
}
lock(&allglock)
allgs = append(allgs, gp)
allglen = uintptr(len(allgs))
unlock(&allglock)
}
sched
type gobuf struct {
// The offsets of sp, pc, and g are known to (hard-coded in) libmach.
//
// ctxt is unusual with respect to GC: it may be a
// heap-allocated funcval, so GC needs to track it, but it
// needs to be set and cleared from assembly, where it's
// difficult to have write barriers. However, ctxt is really a
// saved, live register, and we only ever exchange it between
// the real register and the gobuf. Hence, we treat it as a
// root during stack scanning, which means assembly that saves
// and restores it doesn't need write barriers. It's still
// typed as a pointer so that any other writes from Go get
// write barriers.
sp uintptr
pc uintptr
g guintptr
ctxt unsafe.Pointer
ret sys.Uintreg
lr uintptr
bp uintptr // for GOEXPERIMENT=framepointer
}
该字段的功能,我们大致能猜到应该是保存各种指针地址,有点保护现场的意思,具体看看
memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
newg.sched.sp = sp
newg.stktopsp = sp
newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
newg.sched.g = guintptr(unsafe.Pointer(newg))
gostartcallfn(&newg.sched, fn)
gostartcallfn
+--------+
| | --- --- newg.stack.hi
+--------+ | |
| | | |
+--------+ | |
| | | | siz
+--------+ | |
| | | |
+--------+ | |
| | | ---
+--------+ |
| | |
+--------+ | totalSize = 4*sys.PtrSize + siz
| | |
+--------+ |
| | |
+--------+ |
| | ---
+--------+ 高地址
SP | | 假想的调用方栈帧
+--------+ ---------------------------------------------
| | fn 栈帧
+--------+
| | 低地址
....
+--------+
PC | goexit |
+--------+
gostartcallfn
func gostartcallfn(gobuf *gobuf, fv *funcval) {
var fn unsafe.Pointer
if fv != nil {
fn = unsafe.Pointer(fv.fn)
} else {
fn = unsafe.Pointer(funcPC(nilfunc))
}
gostartcall(gobuf, fn, unsafe.Pointer(fv))
}
func gostartcall(buf *gobuf, fn, ctxt unsafe.Pointer) {
if buf.lr != 0 {
throw("invalid use of gostartcall")
}
buf.lr = buf.pc
buf.pc = uintptr(fn)
buf.ctxt = ctxt
}
此时保存的堆栈的情况如下:
+--------+
| | --- --- newg.stack.hi
+--------+ | |
| | | |
+--------+ | |
| | | | siz
+--------+ | |
| | | |
+--------+ | |
| | | ---
+--------+ |
| | |
+--------+ | totalSize = 4*sys.PtrSize + siz
| | |
+--------+ |
| | |
+--------+ |
| | ---
+--------+ 高地址
| goexit | 假想的调用方栈帧
+--------+ ---------------------------------------------
SP | | fn 栈帧
+--------+
| | 低地址
....
+--------+
PC | fn |
+--------+
sched.sp goexitfnfngoexitgoexit
之后有一个将当前g的状态调整的动作
casgstatus(newg, _Gdead, _Grunnable)
可运行状态的g会被放入到本地的可运行队列中,
runqput(_p_, newg, true)
该函数体如下:
// runqput尝试将g放置在本地可运行队列中。
// 如果next为false,则runqput将g添加到可运行队列的尾部。
// 如果next为true,则runqput将g放在_p_.runnext插槽中。
// 如果运行队列已满,则runnext将g放入全局队列。
// 仅由所有者P执行。
func runqput(_p_ *p, gp *g, next bool) {
if randomizeScheduler && next && fastrand()%2 == 0 {
next = false
}
if next {
retryNext:
oldnext := _p_.runnext
if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
goto retryNext
}
if oldnext == 0 {
return
}
// Kick the old runnext out to the regular run queue.
gp = oldnext.ptr()
}
retry:
h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with consumers
t := _p_.runqtail
if t-h < uint32(len(_p_.runq)) {
_p_.runq[t%uint32(len(_p_.runq))].set(gp)
atomic.StoreRel(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
return
}
if runqputslow(_p_, gp, h, t) {
return
}
// the queue is not full, now the put above must succeed
goto retry
}
以上,关于g的内容,我们有了一个大致的了解,当我们将创建的g放到本地队列时,提到了一个结构体p,这个东西是什么呢?下面是他的结构体
type p struct {
lock mutex
id int32
status uint32 // one of pidle/prunning/...
link puintptr
schedtick uint32 // incremented on every scheduler call
syscalltick uint32 // incremented on every system call
sysmontick sysmontick // last tick observed by sysmon
m muintptr // back-link to associated m (nil if idle)
mcache *mcache
racectx uintptr
deferpool [5][]*_defer // pool of available defer structs of different sizes (see panic.go)
deferpoolbuf [5][32]*_defer
// Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen.
goidcache uint64
goidcacheend uint64
// Queue of runnable goroutines. Accessed without lock.
// 可运行goroutines的队列,访问无需锁,这个就是我们上述创建的g存放的位置
runqhead uint32
runqtail uint32
runq [256]guintptr
// runnext(如果不是nil)是当前G准备好的可运行G,
// 如果正在运行的G的时间片中还有剩余时间,则应下一个运行,而不是从runq中获取G。
// 它将继承当前时间片中剩余的时间。
// 如果将一组goroutine锁定为通信等待模式,
// 则此调度会将其设置为一个单元,
// 并消除(可能很大的)调度延迟,
// 否则该延迟可能是由于将就绪的goroutine添加到运行队列的末尾而引起的。
runnext guintptr
// Available G's (status == Gdead)
gFree struct {
gList
n int32
}
sudogcache []*sudog
sudogbuf [128]*sudog
tracebuf traceBufPtr
// traceSweep indicates the sweep events should be traced.
// This is used to defer the sweep start event until a span
// has actually been swept.
traceSweep bool
// traceSwept and traceReclaimed track the number of bytes
// swept and reclaimed by sweeping in the current sweep loop.
traceSwept, traceReclaimed uintptr
palloc persistentAlloc // per-P to avoid mutex
// Per-P GC state
gcAssistTime int64 // Nanoseconds in assistAlloc
gcFractionalMarkTime int64 // Nanoseconds in fractional mark worker
gcBgMarkWorker guintptr
gcMarkWorkerMode gcMarkWorkerMode
// gcMarkWorkerStartTime is the nanotime() at which this mark
// worker started.
gcMarkWorkerStartTime int64
// gcw is this P's GC work buffer cache. The work buffer is
// filled by write barriers, drained by mutator assists, and
// disposed on certain GC state transitions.
gcw gcWork
// wbBuf is this P's GC write barrier buffer.
//
// TODO: Consider caching this in the running G.
wbBuf wbBuf
runSafePointFn uint32 // if 1, run sched.safePointFn at next safe point
pad cpu.CacheLinePad
}
newproc
type m struct {
g0 *g // 用于执行调度指令的 goroutine
morebuf gobuf // gobuf arg to morestack
divmod uint32 // div/mod denominator for arm - known to liblink
// Fields not known to debuggers.
procid uint64 // for debuggers, but offset not hard-coded
gsignal *g // 处理 signal 的 g
goSigStack gsignalStack // Go-allocated signal handling stack
sigmask sigset // storage for saved signal mask
tls [6]uintptr // 线程本地存储
mstartfn func()
curg *g // 当前运行的G
caughtsig guintptr // goroutine running during fatal signal
p puintptr // 执行 go 代码时持有的 p (如果没有执行则为 nil)
nextp puintptr
oldp puintptr // the p that was attached before executing a syscall
id int64
mallocing int32
throwing int32
preemptoff string // if != "", keep curg running on this m
locks int32
dying int32
profilehz int32
spinning bool // m 当前没有运行 work 且正处于寻找 work 的活跃状态
blocked bool // m is blocked on a note
inwb bool // m is executing a write barrier
newSigstack bool // minit on C thread called sigaltstack
printlock int8
incgo bool // m is executing a cgo call
freeWait uint32 // if == 0, safe to free g0 and delete m (atomic)
fastrand [2]uint32
needextram bool
traceback uint8
ncgocall uint64 // number of cgo calls in total
ncgo int32 // number of cgo calls currently in progress
cgoCallersUse uint32 // if non-zero, cgoCallers in use temporarily
cgoCallers *cgoCallers // cgo traceback if crashing in cgo call
park note
alllink *m // on allm
schedlink muintptr
mcache *mcache
lockedg guintptr
createstack [32]uintptr // stack that created this thread.
lockedExt uint32 // tracking for external LockOSThread
lockedInt uint32 // tracking for internal lockOSThread
nextwaitm muintptr // next m waiting for lock
waitunlockf unsafe.Pointer // todo go func(*g, unsafe.pointer) bool
waitlock unsafe.Pointer
waittraceev byte
waittraceskip int
startingtrace bool
syscalltick uint32
thread uintptr // thread handle
freelink *m // on sched.freem
// these are here because they are too large to be on the stack
// of low-level NOSPLIT functions.
libcall libcall
libcallpc uintptr // for cpu profiler
libcallsp uintptr
libcallg guintptr
syscall libcall // stores syscall parameters on windows
vdsoSP uintptr // SP for traceback while in VDSO call (0 if not in call)
vdsoPC uintptr // PC for traceback while in VDSO call
mOS
}
newproc
➜ goroutinetest gdb main
GNU gdb (GDB) 8.3
Copyright (C) 2019 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-apple-darwin16.7.0".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from main...
(No debugging symbols found in main)
Loading Go Runtime support.
(gdb) info files
Symbols from "goroutinetest/main".
Local exec file:
`goroutinetest/main', file type mach-o-x86-64.
Entry point: 0x1052770
0x0000000001001000 - 0x0000000001093194 is .text
0x00000000010931a0 - 0x00000000010e1ace is __TEXT.__rodata
0x00000000010e1ae0 - 0x00000000010e1be2 is __TEXT.__symbol_stub1
0x00000000010e1c00 - 0x00000000010e2864 is __TEXT.__typelink
0x00000000010e2868 - 0x00000000010e28d0 is __TEXT.__itablink
0x00000000010e28d0 - 0x00000000010e28d0 is __TEXT.__gosymtab
0x00000000010e28e0 - 0x000000000115c108 is __TEXT.__gopclntab
0x000000000115d000 - 0x000000000115d158 is __DATA.__nl_symbol_ptr
0x000000000115d160 - 0x0000000001169c9c is __DATA.__noptrdata
0x0000000001169ca0 - 0x0000000001170610 is .data
0x0000000001170620 - 0x000000000118be50 is .bss
0x000000000118be60 - 0x000000000118e418 is __DATA.__noptrbss
(gdb)
(gdb) b *0x1052770
Breakpoint 1 at 0x1052770
(gdb) info br
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000001052770 <_rt0_amd64_darwin>
(gdb)
_rt0_amd64_darwin
#include "textflag.h"
TEXT _rt0_amd64_darwin(SB),NOSPLIT,$-8
JMP _rt0_amd64(SB)
// When linking with -shared, this symbol is called when the shared library
// is loaded.
TEXT _rt0_amd64_darwin_lib(SB),NOSPLIT,$0
JMP _rt0_amd64_lib(SB)
_rt0_amd64
TEXT _rt0_amd64(SB),NOSPLIT,$-8
MOVQ 0(SP), DI // argc
LEAQ 8(SP), SI // argv
JMP runtime·rt0_go(SB)
runtime.rt0_go
TEXT runtime·rt0_go(SB),NOSPLIT,$0
// SP = stack; R0 = argc; R1 = argv
SUB $32, RSP
MOVW R0, 8(RSP) // argc
MOVD R1, 16(RSP) // argv
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVD $runtime·g0(SB), g
MOVD RSP, R7
MOVD $(-64*1024)(R7), R0
MOVD R0, g_stackguard0(g)
MOVD R0, g_stackguard1(g)
MOVD R0, (g_stack+stack_lo)(g)
MOVD R7, (g_stack+stack_hi)(g)
// if there is a _cgo_init, call it using the gcc ABI.
MOVD _cgo_init(SB), R12
CMP $0, R12
BEQ nocgo
MRS_TPIDR_R0 // load TLS base pointer
MOVD R0, R3 // arg 3: TLS base pointer
#ifdef TLSG_IS_VARIABLE
MOVD $runtime·tls_g(SB), R2 // arg 2: &tls_g
#else
MOVD $0, R2 // arg 2: not used when using platform's TLS
#endif
MOVD $setg_gcc<>(SB), R1 // arg 1: setg
MOVD g, R0 // arg 0: G
SUB $16, RSP // reserve 16 bytes for sp-8 where fp may be saved.
BL (R12)
ADD $16, RSP
nocgo:
BL runtime·save_g(SB)
// update stackguard after _cgo_init
MOVD (g_stack+stack_lo)(g), R0
ADD $const__StackGuard, R0
MOVD R0, g_stackguard0(g)
MOVD R0, g_stackguard1(g)
// set the per-goroutine and per-mach "registers"
MOVD $runtime·m0(SB), R0
// save m->g0 = g0
MOVD g, m_g0(R0)
// save m0 to g0->m
MOVD R0, g_m(g)
BL runtime·check(SB)
MOVW 8(RSP), R0 // copy argc
MOVW R0, -8(RSP)
MOVD 16(RSP), R0 // copy argv
MOVD R0, 0(RSP)
BL runtime·args(SB)
BL runtime·osinit(SB)
BL runtime·schedinit(SB)
// create a new goroutine to start program
MOVD $runtime·mainPC(SB), R0 // entry
MOVD RSP, R7
MOVD.W $0, -8(R7)
MOVD.W R0, -8(R7)
MOVD.W $0, -8(R7)
MOVD.W $0, -8(R7)
MOVD R7, RSP
BL runtime·newproc(SB)
ADD $32, RSP
// start this M
BL runtime·mstart(SB)
MOVD $0, R0
MOVD R0, (R0) // boom
UNDEF
首先进行g0和m0的初始化,之后进行本地线程存储的检测设置。之后尽心调度器的初始化,并创建一个新的goroutine运行程序,最后开启我们的M.
// The bootstrap sequence is:
//
// call osinit
// call schedinit
// make & queue new G
// call runtime·mstart
//
// The new G calls runtime·main.
func schedinit() {
// raceinit must be the first call to race detector.
// In particular, it must be done before mallocinit below calls racemapshadow.
_g_ := getg()
if raceenabled {
_g_.racectx, raceprocctx0 = raceinit()
}
// 设置最多启动10000个操作系统线程,也是最多10000个M
sched.maxmcount = 10000
tracebackinit()
moduledataverify()
stackinit()
mallocinit()
mcommoninit(_g_.m) // 初始化m0,因为从前面的代码我们知道g0->m = &m0
cpuinit() // must run before alginit
alginit() // maps must not be used before this call
modulesinit() // provides activeModules
typelinksinit() // uses maps, activeModules
itabsinit() // uses activeModules
msigsave(_g_.m)
initSigmask = _g_.m.sigmask
goargs()
goenvs()
parsedebugvars()
gcinit()
sched.lastpoll = uint64(nanotime())
// 系统中有多少核,就创建和初始化多少个p结构体对象
procs := ncpu
if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 {
// 如果环境变量指定了GOMAXPROCS,则创建指定数量的p
procs = n
}
// 创建和初始化全局变量allp
if procresize(procs) != nil {
throw("unknown runnable goroutine during bootstrap")
}
// For cgocheck > 1, we turn on the write barrier at all times
// and check all pointer writes. We can't do this until after
// procresize because the write barrier needs a P.
if debug.cgocheck > 1 {
writeBarrier.cgo = true
writeBarrier.enabled = true
for _, p := range allp {
p.wbBuf.reset()
}
}
if buildVersion == "" {
// Condition should never trigger. This code just serves
// to ensure runtime·buildVersion is kept in the resulting binary.
buildVersion = "unknown"
}
}
我们来关注一下m0是如何初始化的
func mcommoninit(mp *m) {
_g_ := getg()
// g0 stack won't make sense for user (and is not necessary unwindable).
if _g_ != _g_.m.g0 {
callers(1, mp.createstack[:])
}
lock(&sched.lock)
if sched.mnext+1 < sched.mnext {
throw("runtime: thread ID overflow")
}
// m0分配的id,schedt结构体的mnext字段标识下一个可用的thread id.
mp.id = sched.mnext
sched.mnext++
checkmcount()
mp.fastrand[0] = 1597334677 * uint32(mp.id)
mp.fastrand[1] = uint32(cputicks())
if mp.fastrand[0]|mp.fastrand[1] == 0 {
mp.fastrand[1] = 1
}
mpreinit(mp)
if mp.gsignal != nil {
mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
}
// Add to allm so garbage collector doesn't free g->m
// when it is just in a register or thread-local storage.
// allm挂到这里,防止被垃圾回收
mp.alllink = allm
// NumCgoCall() iterates over allm w/o schedlock,
// so we need to publish it safely.
atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
unlock(&sched.lock)
// Allocate memory to hold a cgo traceback if the cgo call crashes.
if iscgo || GOOS == "solaris" || GOOS == "windows" {
mp.cgoCallers = new(cgoCallers)
}
}
调度器初始化最后一部分工作就是p的初始化
runtime.mstart
func mstart() {
_g_ := getg()
// 通过检查 g 执行占的边界来确定是否为系统栈
osStack := _g_.stack.lo == 0
if osStack {
// Initialize stack bounds from system stack.
// Cgo may have left stack size in stack.hi.
// minit may update the stack bounds.
size := _g_.stack.hi
if size == 0 {
size = 8192 * sys.StackGuardMultiplier
}
_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
_g_.stack.lo = _g_.stack.hi - size + 1024
}
// Initialize stack guards so that we can start calling
// both Go and C functions with stack growth prologues.
_g_.stackguard0 = _g_.stack.lo + _StackGuard
_g_.stackguard1 = _g_.stackguard0
// 启动m
mstart1()
// 退出线程
if GOOS == "windows" || GOOS == "solaris" || GOOS == "plan9" || GOOS == "darwin" || GOOS == "aix" {
// Window, Solaris, Darwin, AIX and Plan 9 always system-allocate
// the stack, but put it in _g_.stack before mstart,
// so the logic above hasn't set osStack yet.
osStack = true
}
mexit(osStack)
}
func mstart1() {
_g_ := getg()
if _g_ != _g_.m.g0 {
throw("bad runtime·mstart")
}
// 为了在 mcall 的栈顶使用调用方来结束当前线程,做记录
// 当进入 schedule 之后,我们再也不会回到 mstart1,所以其他调用可以复用当前帧。
save(getcallerpc(), getcallersp())
asminit()
minit()
// Install signal handlers; after minit so that minit can
// prepare the thread to be able to handle the signals.
if _g_.m == &m0 {
mstartm0()
}
// 执行启动函数
if fn := _g_.m.mstartfn; fn != nil {
fn()
}
// 如果当前 m 并非 m0,则要求绑定 p
if _g_.m != &m0 {
acquirep(_g_.m.nextp.ptr())
_g_.m.nextp = 0
}
// 彻底准备好,开始调度,永不返回
schedule()
}
mstart1schedule
func schedule() {
_g_ := getg()
if _g_.m.locks != 0 {
throw("schedule: holding locks")
}
if _g_.m.lockedg != 0 {
stoplockedm()
execute(_g_.m.lockedg.ptr(), false) // Never returns.
}
// We should not schedule away from a g that is executing a cgo call,
// since the cgo call is using the m's g0 stack.
if _g_.m.incgo {
throw("schedule: in cgo")
}
top:
if sched.gcwaiting != 0 {
gcstopm()
goto top
}
if _g_.m.p.ptr().runSafePointFn != 0 {
runSafePointFn()
}
var gp *g
var inheritTime bool
if trace.enabled || trace.shutdown {
gp = traceReader()
if gp != nil {
casgstatus(gp, _Gwaiting, _Grunnable)
traceGoUnpark(gp, 0)
}
}
if gp == nil && gcBlackenEnabled != 0 {
gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
}
if gp == nil {
// // 说明不在 GC
//
// 每调度 61 次,就检查一次全局队列,保证公平性
// 否则两个 goroutine 可以通过互相 respawn 一直占领本地的 runqueue
if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
lock(&sched.lock)
// 从全局队列中偷 g
gp = globrunqget(_g_.m.p.ptr(), 1)
unlock(&sched.lock)
}
}
if gp == nil {
gp, inheritTime = runqget(_g_.m.p.ptr())
if gp != nil && _g_.m.spinning {
throw("schedule: spinning with local work")
}
}
if gp == nil {
gp, inheritTime = findrunnable() // 如果偷都偷不到,则休眠,在此阻塞
}
// 该线程将运行goroutine,并且不再自旋,
// 因此,如果将其标记为正在自旋,则需要立即将其重置并可能启动新自旋的M。
if _g_.m.spinning {
resetspinning()
}
if sched.disable.user && !schedEnabled(gp) {
// Scheduling of this goroutine is disabled. Put it on
// the list of pending runnable goroutines for when we
// re-enable user scheduling and look again.
lock(&sched.lock)
if schedEnabled(gp) {
// Something re-enabled scheduling while we
// were acquiring the lock.
unlock(&sched.lock)
} else {
sched.disable.runnable.pushBack(gp)
sched.disable.n++
unlock(&sched.lock)
goto top
}
}
if gp.lockedm != 0 {
// Hands off own p to the locked m,
// then blocks waiting for a new p.
startlockedm(gp)
goto top
}
// 开始执行,如果inheritTime为true标识继承时间片
execute(gp, inheritTime)
}
resetspinning
func resetspinning() {
_g_ := getg()
if !_g_.m.spinning {
throw("resetspinning: not a spinning m")
}
_g_.m.spinning = false
nmspinning := atomic.Xadd(&sched.nmspinning, -1)
if int32(nmspinning) < 0 {
throw("findrunnable: negative nmspinning")
}
// M的唤醒策略故意有些保守,因此请检查是否需要在此处唤醒另一个P。
// 有关详细信息,请参见文件顶部的“工作线程park/unpark”注释。
if nmspinning == 0 && atomic.Load(&sched.npidle) > 0 {
wakep()
}
}
wakep()startm(nil, true)startmp == nilm.p == nilnmspinningnmspinningm.spinning
scheduleexecute
// 将gp调度到当前的M上运行
// 如果 inheritTime 是 true, gp 继承剩余的时间片,否则,它将开启一个新的时间片
// 永不返回
// Never returns.
//
// 写屏障允许,因为在很多地方它将立即调用在获取到p之后
//
//go:yeswritebarrierrec
func execute(gp *g, inheritTime bool) {
_g_ := getg()
casgstatus(gp, _Grunnable, _Grunning)
gp.waitsince = 0
gp.preempt = false
gp.stackguard0 = gp.stack.lo + _StackGuard
if !inheritTime {
_g_.m.p.ptr().schedtick++
}
_g_.m.curg = gp
gp.m = _g_.m
// Check whether the profiler needs to be turned on or off.
hz := sched.profilehz
if _g_.m.profilehz != hz {
setThreadCPUProfiler(hz)
}
if trace.enabled {
// GoSysExit has to happen when we have a P, but before GoStart.
// So we emit it here.
if gp.syscallsp != 0 && gp.sysblocktraced {
traceGoSysExit(gp.sysexitticks)
}
traceGoStart()
}
// 终于开始执行了
gogo(&gp.sched)
}
在amd64环境下的gogo
// func gogo(buf *gobuf)
// 从Gobuf中恢复状态; longjmp
TEXT runtime·gogo(SB), NOSPLIT, $16-8
MOVQ buf+0(FP), BX // gobuf
MOVQ gobuf_g(BX), DX
MOVQ 0(DX), CX // make sure g != nil
get_tls(CX)
MOVQ DX, g(CX)
MOVQ gobuf_sp(BX), SP // restore SP
MOVQ gobuf_ret(BX), AX
MOVQ gobuf_ctxt(BX), DX
MOVQ gobuf_bp(BX), BP
MOVQ $0, gobuf_sp(BX) // clear to help garbage collector
MOVQ $0, gobuf_ret(BX)
MOVQ $0, gobuf_ctxt(BX)
MOVQ $0, gobuf_bp(BX)
MOVQ gobuf_pc(BX), BX // 获取 g 要执行的函数的入口地址
JMP BX // 开始执行
schedule
schedulefindrunnable
// 从全局队列中偷取,调用时必须锁住调度器
func globrunqget(_p_ *p, max int32) *g {
if sched.runqsize == 0 {
return nil
}
n := sched.runqsize/gomaxprocs + 1
if n > sched.runqsize {
n = sched.runqsize
}
if max > 0 && n > max {
n = max
}
if n > int32(len(_p_.runq))/2 {
n = int32(len(_p_.runq)) / 2
}
sched.runqsize -= n
gp := sched.runq.pop()
n--
// 继续取剩下的 n-1 个全局队列放入本地队列
for ; n > 0; n-- {
gp1 := sched.runq.pop()
runqput(_p_, gp1, false)
}
return gp
}
// 从本地可运行队列中获取 g
// 如果 inheritTime 为 true,则 g 继承剩余的时间片
// 否则开始一个新的时间片。在所有者 P 上执行
func runqget(_p_ *p) (gp *g, inheritTime bool) {
// If there's a runnext, it's the next G to run.
for {
next := _p_.runnext
if next == 0 {
break
}
if _p_.runnext.cas(next, 0) {
return next.ptr(), true
}
}
for {
h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers
t := _p_.runqtail
if t == h {
return nil, false
}
gp := _p_.runq[h%uint32(len(_p_.runq))].ptr()
if atomic.CasRel(&_p_.runqhead, h, h+1) { // cas-release, commits consume
return gp, false
}
}
}
// Finds a runnable goroutine to execute.
// Tries to steal from other P's, get g from global queue, poll network.
func findrunnable() (gp *g, inheritTime bool) {
_g_ := getg()
// The conditions here and in handoffp must agree: if
// findrunnable would return a G to run, handoffp must start
// an M.
top:
_p_ := _g_.m.p.ptr()
if sched.gcwaiting != 0 {
gcstopm()
goto top
}
if _p_.runSafePointFn != 0 {
runSafePointFn()
}
if fingwait && fingwake {
if gp := wakefing(); gp != nil {
ready(gp, 0, true)
}
}
if *cgo_yield != nil {
asmcgocall(*cgo_yield, nil)
}
// local runq
if gp, inheritTime := runqget(_p_); gp != nil {
return gp, inheritTime
}
// global runq
if sched.runqsize != 0 {
lock(&sched.lock)
gp := globrunqget(_p_, 0)
unlock(&sched.lock)
if gp != nil {
return gp, false
}
}
// Poll network.
// This netpoll is only an optimization before we resort to stealing.
// We can safely skip it if there are no waiters or a thread is blocked
// in netpoll already. If there is any kind of logical race with that
// blocked thread (e.g. it has already returned from netpoll, but does
// not set lastpoll yet), this thread will do blocking netpoll below
// anyway.
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 {
if list := netpoll(false); !list.empty() { // non-blocking
gp := list.pop()
injectglist(&list)
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
return gp, false
}
}
// Steal work from other P's.
procs := uint32(gomaxprocs)
if atomic.Load(&sched.npidle) == procs-1 {
// Either GOMAXPROCS=1 or everybody, except for us, is idle already.
// New work can appear from returning syscall/cgocall, network or timers.
// Neither of that submits to local run queues, so no point in stealing.
goto stop
}
// If number of spinning M's >= number of busy P's, block.
// This is necessary to prevent excessive CPU consumption
// when GOMAXPROCS>>1 but the program parallelism is low.
if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) {
goto stop
}
if !_g_.m.spinning {
_g_.m.spinning = true
atomic.Xadd(&sched.nmspinning, 1)
}
for i := 0; i < 4; i++ {
for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() {
if sched.gcwaiting != 0 {
goto top
}
stealRunNextG := i > 2 // first look for ready queues with more than 1 g
if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil {
return gp, false
}
}
}
stop:
// We have nothing to do. If we're in the GC mark phase, can
// safely scan and blacken objects, and have work to do, run
// idle-time marking rather than give up the P.
if gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != 0 && gcMarkWorkAvailable(_p_) {
_p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
gp := _p_.gcBgMarkWorker.ptr()
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
return gp, false
}
// wasm only:
// If a callback returned and no other goroutine is awake,
// then pause execution until a callback was triggered.
if beforeIdle() {
// At least one goroutine got woken.
goto top
}
// Before we drop our P, make a snapshot of the allp slice,
// which can change underfoot once we no longer block
// safe-points. We don't need to snapshot the contents because
// everything up to cap(allp) is immutable.
allpSnapshot := allp
// return P and block
lock(&sched.lock)
if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 {
unlock(&sched.lock)
goto top
}
if sched.runqsize != 0 {
gp := globrunqget(_p_, 0)
unlock(&sched.lock)
return gp, false
}
if releasep() != _p_ {
throw("findrunnable: wrong p")
}
pidleput(_p_)
unlock(&sched.lock)
// Delicate dance: thread transitions from spinning to non-spinning state,
// potentially concurrently with submission of new goroutines. We must
// drop nmspinning first and then check all per-P queues again (with
// #StoreLoad memory barrier in between). If we do it the other way around,
// another thread can submit a goroutine after we've checked all run queues
// but before we drop nmspinning; as the result nobody will unpark a thread
// to run the goroutine.
// If we discover new work below, we need to restore m.spinning as a signal
// for resetspinning to unpark a new worker thread (because there can be more
// than one starving goroutine). However, if after discovering new work
// we also observe no idle Ps, it is OK to just park the current thread:
// the system is fully loaded so no spinning threads are required.
// Also see "Worker thread parking/unparking" comment at the top of the file.
wasSpinning := _g_.m.spinning
if _g_.m.spinning {
_g_.m.spinning = false
if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
throw("findrunnable: negative nmspinning")
}
}
// check all runqueues once again
for _, _p_ := range allpSnapshot {
if !runqempty(_p_) {
lock(&sched.lock)
_p_ = pidleget()
unlock(&sched.lock)
if _p_ != nil {
acquirep(_p_)
if wasSpinning {
_g_.m.spinning = true
atomic.Xadd(&sched.nmspinning, 1)
}
goto top
}
break
}
}
// Check for idle-priority GC work again.
if gcBlackenEnabled != 0 && gcMarkWorkAvailable(nil) {
lock(&sched.lock)
_p_ = pidleget()
if _p_ != nil && _p_.gcBgMarkWorker == 0 {
pidleput(_p_)
_p_ = nil
}
unlock(&sched.lock)
if _p_ != nil {
acquirep(_p_)
if wasSpinning {
_g_.m.spinning = true
atomic.Xadd(&sched.nmspinning, 1)
}
// Go back to idle GC check.
goto stop
}
}
// poll network
if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
if _g_.m.p != 0 {
throw("findrunnable: netpoll with p")
}
if _g_.m.spinning {
throw("findrunnable: netpoll with spinning")
}
list := netpoll(true) // block until new work is available
atomic.Store64(&sched.lastpoll, uint64(nanotime()))
if !list.empty() {
lock(&sched.lock)
_p_ = pidleget()
unlock(&sched.lock)
if _p_ != nil {
acquirep(_p_)
gp := list.pop()
injectglist(&list)
casgstatus(gp, _Gwaiting, _Grunnable)
if trace.enabled {
traceGoUnpark(gp, 0)
}
return gp, false
}
injectglist(&list)
}
}
stopm()
goto top
}
在 findrunnable 这个过程中,我们:
首先检查是是否正在进行 GC,如果是则暂止当前的 m 并阻塞休眠;
尝试从本地队列中取 g,如果取到,则直接返回,否则继续从全局队列中找 g,如果找到则直接返回;
检查是否存在 poll 网络的 g,如果有,则直接返回;
如果此时仍然无法找到 g,则从其他 P 的本地队列中偷取;
从其他 P 本地队列偷取的工作会执行四轮,在前两轮中只会查找 runnable 队列,后两轮则会优先查找 ready 队列,如果找到,则直接返回;
所有的可能性都尝试过了,在准备暂止 m 之前,还要进行额外的检查;
首先检查此时是否是 GC mark 阶段,如果是,则直接返回 mark 阶段的 g;
如果仍然没有,则对当前的 p 进行快照,准备对调度器进行加锁;
当调度器被锁住后,我们仍然还需再次检查这段时间里是否有进入 GC,如果已经进入了 GC,则回到第一步,阻塞 m 并休眠;
当调度器被锁住后,如果我们又在全局队列中发现了 g,则直接返回;
当调度器被锁住后,我们彻底找不到任务了,则归还释放当前的 P,将其放入 idle 链表中,并解锁调度器;
当 M/P 已经解绑后,我们需要将 m 的状态切换出自旋状态,并减少 nmspinning;
此时我们仍然需要重新检查所有的队列;
如果此时我们发现有一个 P 队列不空,则立刻尝试获取一个 P,如果获取到,则回到第一步,重新执行偷取工作,如果取不到,则说明系统已经满载,无需继续进行调度;
同样,我们还需要再检查是否有 GC mark 的 g 出现,如果有,获取 P 并回到第一步,重新执行偷取工作;
同样,我们还需要再检查是否存在 poll 网络的 g,如果有,则直接返回;
终于,我们什么也没找到,暂止当前的 m 并阻塞休眠。
本系列文章:
有任何问题,欢迎留言
参考文献: