本文搜集整理了关于python中numpy single方法/函数的使用示例。

Namespace/Package: numpy

Method/Function: single

导入包: numpy

每个示例代码都附有代码来源和完整的源代码,希望对您的程序开发有帮助。

示例1
	def get_2state_gaussian_seq(lens,dims=2,means1=[2,2,2,2],means2=[5,5,5,5],vars1=[1,1,1,1],vars2=[1,1,1,1],anom_prob=1.0):
		
		seqs = co.matrix(0.0, (dims, lens))
		lbls = co.matrix(0, (1,lens))
		marker = 0

		# generate first state sequence
		for d in range(dims):
			seqs[d,:] = co.normal(1,lens)*vars1[d] + means1[d]

		prob = np.random.uniform()
		if prob<anom_prob:		
			# add second state blocks
			while (True):
				max_block_len = 0.6*lens
				min_block_len = 0.1*lens
				block_len = np.int(max_block_len*np.single(co.uniform(1))+3)
				block_start = np.int(lens*np.single(co.uniform(1)))

				if (block_len - (block_start+block_len-lens)-3>min_block_len):
					break

			block_len = min(block_len,block_len - (block_start+block_len-lens)-3)
			lbls[block_start:block_start+block_len-1] = 1
			marker = 1
			for d in range(dims):
				#print block_len
				seqs[d,block_start:block_start+block_len-1] = co.normal(1,block_len-1)*vars2[d] + means2[d]

		return (seqs, lbls, marker)
示例2
 def calc_updates(valid_labels, pred_label, label):
     num_classes = len(valid_labels)
     
     pred_flags = [set(np.where((pred_label == _).ravel())[0]) for _ in valid_labels]
     class_flags = [set(np.where((label == _).ravel())[0]) for _ in valid_labels]
     
     conf = [len(class_flags[j].intersection(pred_flags[k])) for j in xrange(num_classes) for k in xrange(num_classes)]
     pixel = [len(class_flags[j]) for j in xrange(num_classes)]
     return np.single(conf).reshape((num_classes, num_classes)), np.single(pixel)
示例3
def roc_curve(predicted, actual, cls):
    si = np.argsort(-predicted)
    tp = np.cumsum(np.single(actual[si]==cls))
    fp = np.cumsum(np.single(actual[si]!=cls))
    tp = tp/np.sum(actual==cls)
    fp = fp/np.sum(actual!=cls)
    tp = np.hstack((0.0, tp, 1.0))
    fp = np.hstack((0.0, fp, 1.0))
    return tp, fp
示例4
def quad_poly_patch_color_basis(patch):
    h, w, c = patch.shape[0], patch.shape[1], patch.shape[2]
    assert c == 3
    basis = np.zeros((h, w, 10), dtype=np.single)
    for i in range(h):
        for j in range(w):
            l, a, b = np.single(patch[i, j, 0]), np.single(patch[i, j, 1]), np.single(patch[i, j, 2])
            basis[i, j, :] = [l * l, a * a, b * b, l * a, l * b, a * b, l, a, b, 1]
    return basis    
示例5
def get_lightness_equalization_curve_control_points(L):
    h, w = L.shape[0], L.shape[1]
    bins = 100
    hist, bin_edges = np.histogram(L, bins, range=(0, 100), density=False)
    hist = np.single(hist) / np.single(h * w)
    cumsum_hist = np.cumsum(hist)
    spline, x = get_cum_hist_BSpline_curve(cumsum_hist, 0.0, 100.0, bins)
#     mpplot.plot(x,cumsum_hist)
#     mpplot.plot(x, spline(x),'.-')
#     mpplot.show()
    return spline.get_coeffs()
示例6
def point_wise_add_scalar(A, scalar1=1, scalar2=1, OUT_BUFFER=None, gpu_ind=0):
	assert isinstance(gpu_ind,int)
	check_buffer(A)
	
	if OUT_BUFFER != None:
		check_buffer(OUT_BUFFER)
		OUT_BUFFER[1] = copy.deepcopy(A[1])
	else:
		OUT_BUFFER = copy.deepcopy(A)
	
	_ntm_module.point_wise_add_scalar(A[0], np.single(scalar1), np.single(scalar2), OUT_BUFFER[0], gpu_ind)
示例7
def reverse_network_recur(deriv_above, layer_ind, LAYERS, WEIGHTS, OUTPUT, OUTPUT_PREV, PARTIALS, WEIGHT_DERIVS, keep_dims, scalar, abort_layer): # multiply all partials together
	L = LAYERS[layer_ind]
	N_ARGS = len(L['in_shape'])
	deriv_above_created = deriv_above is None
	
	if len(LAYERS[layer_ind]['out_shape']) > 1 and deriv_above is None: # skip image dim
		n_imgs = LAYERS[layer_ind]['out_shape'][0]
		deriv_above_shape = LAYERS[layer_ind]['out_shape'] + LAYERS[layer_ind]['out_shape'][1:]
		deriv_above = init_buffer(np.single(np.tile(np.eye(np.prod(LAYERS[layer_ind]['out_shape'][1:]))[np.newaxis], (n_imgs, 1, 1))).reshape(deriv_above_shape))
	elif deriv_above is None:
		deriv_above_shape = LAYERS[layer_ind]['out_shape'] + LAYERS[layer_ind]['out_shape']
		deriv_above = init_buffer(np.single(np.eye(np.prod(LAYERS[layer_ind]['out_shape'])).reshape(deriv_above_shape)))
	
	for arg in range(N_ARGS):
		src = L['in_source'][arg]
		if L['in_source'][arg] != -1: # don't compute gradients for user-supplied entries (Ex. images)
			
			# compute derivs
			args = build_forward_args(L, layer_ind, OUTPUT, OUTPUT_PREV, WEIGHTS)
			deriv_above_new = L['deriv_F'][arg](args, OUTPUT[layer_ind], deriv_above, additional_args=L['additional_deriv_args'][arg])
			
			# input is a layer:
			if isinstance(src, int) and src != -1:
				# memory partials, stop here, add these partials to the correct weight derivs:
				if L['in_prev'][arg]:
					P = PARTIALS[src]
					N_ARGS2 = len(P['in_source'])
					for arg2 in range(N_ARGS2):
						p_layer_ind = P['in_source'][arg2]
						p_arg = P['in_arg'][arg2]
						p_partial = P['partial'][arg2]
						
						# multiply partials batched over the images, then sum the results:
						deriv_temp = mult_partials(deriv_above_new, p_partial, LAYERS[src]['out_shape'], keep_dims=keep_dims)
						
						WEIGHT_DERIVS[p_layer_ind][p_arg] = add_points_inc((WEIGHT_DERIVS[p_layer_ind][p_arg], deriv_temp), scalar=scalar)
						
						free_buffer(deriv_temp)
						
				# another layer (At this time step, go back to earlier layers)
				# [do not go back if this is the abort_layer where we stop backpropping]
				elif src != abort_layer:
					reverse_network_recur(deriv_above_new, src, LAYERS, WEIGHTS, OUTPUT, OUTPUT_PREV, PARTIALS, WEIGHT_DERIVS, keep_dims, scalar, abort_layer)
			
			# input is not a layer, end here
			else:
				WEIGHT_DERIVS[layer_ind][arg] = add_points_inc((WEIGHT_DERIVS[layer_ind][arg], deriv_above_new), scalar=scalar)
				
			free_buffer(deriv_above_new)
	
	if deriv_above_created:
		free_buffer(deriv_above)
	
	return WEIGHT_DERIVS
示例8
def get_central_pixel_grad_vector(batch_img, nb_hs):
    nb_sz = 2 * nb_hs + 1
    ch, h, w, num_imgs = 
    batch_img.shape[0], batch_img.shape[1], batch_img.shape[2], batch_img.shape[3]
    ct_x, ct_y = w / 2, h / 2
        
    # 2D gradient vector for each RGB (or LAB channel)
    right, left = batch_img[:, ct_y, ct_x + 1, :], batch_img[:, ct_y, ct_x - 1, :]
    top, bottom = batch_img[:, ct_y + 1, ct_x, :], batch_img[:, ct_y - 1, ct_x, :]
    x_grad, y_grad = (right - left) / np.single(2.0), (top - bottom) / np.single(2.0)
    
    return np.concatenate((x_grad, y_grad), axis=0) 
示例9
 def test_against_known_values(self):
     R = fractions.Fraction
     assert_equal(R(1075, 512),
                  R(*np.half(2.1).as_integer_ratio()))
     assert_equal(R(-1075, 512),
                  R(*np.half(-2.1).as_integer_ratio()))
     assert_equal(R(4404019, 2097152),
                  R(*np.single(2.1).as_integer_ratio()))
     assert_equal(R(-4404019, 2097152),
                  R(*np.single(-2.1).as_integer_ratio()))
     assert_equal(R(4728779608739021, 2251799813685248),
                  R(*np.double(2.1).as_integer_ratio()))
     assert_equal(R(-4728779608739021, 2251799813685248),
                  R(*np.double(-2.1).as_integer_ratio()))
示例10
	def get_scores(self, sol, idx, y=[]):
		y = np.array(y)
		if (y.size==0):
			y=np.array(self.y[idx])

		(foo, T) = y.shape
		N = self.states
		F = self.dims
		scores = matrix(0.0, (1, T))

		# this is the score of the complete example
		anom_score = sol.trans()*self.get_joint_feature_map(idx)

		# transition matrix
		A = self.get_transition_matrix(sol)
		# emission matrix without loss
		em = self.calc_emission_matrix(sol, idx, augment_loss=False, augment_prior=False);
		
		# store scores for each position of the sequence		
		scores[0] = self.start_p[int(y[0,0])] + em[int(y[0,0]),0]
		for t in range(1,T):
			scores[t] = A[int(y[0,t-1]),int(y[0,t])] + em[int(y[0,t]),t]

		# transform for better interpretability
		if max(abs(scores))>10.0**(-15):
			scores = exp(-abs(4.0*scores/max(abs(scores))))
		else:
			scores = matrix(0.0, (1,T))

		return (float(np.single(anom_score)), scores)
示例11
def get_example_list(num, dims, signal, label, start, min_lens=600, max_lens=800):
	(foo, LEN) = label.shape
	min_genes = int(float(num)*0.15)

	X = []
	Y = []
	phi = []
	marker = []

	cnt_genes = 0
	cnt = 0
	while (cnt<num):
		lens = np.int(np.single(co.uniform(1, a=min_lens, b=max_lens)))
		if (start+lens)>LEN:
			print('Warning! End of genome. Could not add example.')
			break
		(exm, lbl, phi_i, isGene, end_pos) = get_example(signal, label, dims, start, start+lens)
		
		# accept example, if it has the correct length
		if (end_pos-start<=max_lens or (isGene==True and end_pos-start<800)):		
			X.append(exm)
			Y.append(lbl)
			phi.append(phi_i)
			if isGene:
				marker.append(0)
				cnt_genes += 1
				min_genes -= 1
			else:
				marker.append(1)
			cnt += 1
		start = end_pos

	print('Number of examples {0}. {1} of them are genic.'.format(len(Y), cnt_genes))
	return (X, Y, phi, marker, start) 
示例12
  def steer(self):

    N = self.fixedCL.shape

    # Obtain 2D view
    SteeringGeneric.update_slices(self)

    fixed2D, moving2D = self.get_slices()

    fixedV, movingV = self.get_slice_axes()

    F = SteeringGeneric.get_frame_matrix(self, fixedV, movingV)

    # Perform 2D registration
    scale, T2 = self.register_scale2d(fixed2D, moving2D)

    print "S = ", scale

    S = np.identity(3, np.single) * scale

    T = F[:,0] * T2[0]  + F[:,1] * T2[1]
    C = np.array([N[0]/2, N[1]/2, N[2]/2], np.single)
    T += C - np.dot(S,C)

    T = np.single(T)

    # Subtract identitiy from matrix to match convention for PolyAffineCL
    for dim in range(3):
      S[dim, dim] -= 1.0

    # Return 3D transformation that will be folded into an existing polyaffine
    return S, T
示例13
def _get_transformer_image():
    scale, mean_, std_ = _get_scalemeanstd()
    transformers = []
    if scale > 0:
        transformers.append(ts.ColorScale(np.single(scale)))
    transformers.append(ts.ColorNormalize(mean_, std_))
    return transformers
示例14
def add_points_inc(args, OUT_BUFFER=None, scalar=1, scalar0=1, gpu_ind=GPU_IND):
	t = time.time()
	
	A, B = args
	
	if OUT_BUFFER != None:
		check_buffer(OUT_BUFFER)
		OUT_BUFFER[1] = A[1]
	else:
		OUT_BUFFER = A
	
	_ntm_module3.add_points(A[0], B[0], np.single(scalar), np.single(scalar0), OUT_BUFFER[0], gpu_ind)

	if OUT_BUFFER[1] is None:
		OUT_BUFFER[1] = B[1]
	t_add[0] = time.time() - t
	return OUT_BUFFER
示例15
 def test_floats_from_string(self, level=rlevel):
     """Ticket #640, floats from string"""
     fsingle = np.single('1.234')
     fdouble = np.double('1.234')
     flongdouble = np.longdouble('1.234')
     assert_almost_equal(fsingle, 1.234)
     assert_almost_equal(fdouble, 1.234)
     assert_almost_equal(flongdouble, 1.234)
示例16
 def test_floating(self):
     # Ticket #640, floats from string
     fsingle = np.single('1.234')
     fdouble = np.double('1.234')
     flongdouble = np.longdouble('1.234')
     assert_almost_equal(fsingle, 1.234)
     assert_almost_equal(fdouble, 1.234)
     assert_almost_equal(flongdouble, 1.234)
示例17
def get_lightness_detail_weighted_equalization_curve_control_points(L, sigma):
    bins = 100
    grad_mag = scipy.ndimage.filters.gaussian_gradient_magnitude(L, sigma)
    hist, bin_edges = np.histogram(L, bins, range=(0, 100), weights=grad_mag)
    hist = np.single(hist) / np.sum(grad_mag)
    cumsum_hist = np.cumsum(hist)
    spline, x = get_cum_hist_BSpline_curve(cumsum_hist, 0.0, 100.0, bins)
    return spline.get_coeffs()        
示例18
    def test_floating_overflow(self):
        """ Strings containing an unrepresentable float overflow """
        fhalf = np.half('1e10000')
        assert_equal(fhalf, np.inf)
        fsingle = np.single('1e10000')
        assert_equal(fsingle, np.inf)
        fdouble = np.double('1e10000')
        assert_equal(fdouble, np.inf)
        flongdouble = assert_warns(RuntimeWarning, np.longdouble, '1e10000')
        assert_equal(flongdouble, np.inf)

        fhalf = np.half('-1e10000')
        assert_equal(fhalf, -np.inf)
        fsingle = np.single('-1e10000')
        assert_equal(fsingle, -np.inf)
        fdouble = np.double('-1e10000')
        assert_equal(fdouble, -np.inf)
        flongdouble = assert_warns(RuntimeWarning, np.longdouble, '-1e10000')
        assert_equal(flongdouble, -np.inf)
示例19
def reverse_network_btt_recur(deriv_above, layer_ind, LAYERS, WEIGHTS, OUTPUT, WEIGHT_DERIVS, frame, keep_dims, scalar, abort_layer): # multiply all partials together
	L = LAYERS[layer_ind]
	N_ARGS = len(L['in_shape'])
	deriv_above_created = deriv_above is None
	
	if len(LAYERS[layer_ind]['out_shape']) > 1 and deriv_above is None: # skip image dim
		n_imgs = LAYERS[layer_ind]['out_shape'][0]
		deriv_above_shape = LAYERS[layer_ind]['out_shape'] + LAYERS[layer_ind]['out_shape'][1:]
		deriv_above = init_buffer(np.single(np.tile(np.eye(np.prod(LAYERS[layer_ind]['out_shape'][1:]))[np.newaxis], (n_imgs, 1, 1))).reshape(deriv_above_shape))
	elif deriv_above is None:
		deriv_above_shape = LAYERS[layer_ind]['out_shape'] + LAYERS[layer_ind]['out_shape']
		deriv_above = init_buffer(np.single(np.eye(np.prod(LAYERS[layer_ind]['out_shape'])).reshape(deriv_above_shape)))
	
	for arg in range(N_ARGS):
		src = L['in_source'][arg]
		if L['in_source'][arg] != -1: # don't compute gradients for user-supplied entries (Ex. images)
			
			# compute derivs
			args = build_forward_args(L, layer_ind, OUTPUT[frame], OUTPUT[frame-1], WEIGHTS)
			deriv_above_new = L['deriv_F'][arg](args, OUTPUT[frame][layer_ind], deriv_above, additional_args=L['additional_deriv_args'][arg])
			
			# input is a layer:
			if isinstance(src, int) and src != -1:
				# memory partials--keep going back through the network...take step back in time...
				if L['in_prev'][arg]:
					if frame > 1:
						reverse_network_btt_recur(deriv_above_new, src, LAYERS, WEIGHTS, OUTPUT, WEIGHT_DERIVS, frame-1, keep_dims, scalar, abort_layer)
					
				# another layer (At this time step, go back to earlier layers)
				# [do not go back if this is the abort_layer where we stop backpropping]
				elif src != abort_layer:
					reverse_network_btt_recur(deriv_above_new, src, LAYERS, WEIGHTS, OUTPUT, WEIGHT_DERIVS, frame, keep_dims, scalar, abort_layer)
			
			# input is not a layer, end here
			else:
				WEIGHT_DERIVS[layer_ind][arg] = add_points_inc((WEIGHT_DERIVS[layer_ind][arg], deriv_above_new), scalar=scalar)
				
			free_buffer(deriv_above_new)
	
	if deriv_above_created:
		free_buffer(deriv_above)
	
	return WEIGHT_DERIVS
示例20
def leibnitz(k, n):
    sum = 0.0
    rev_sum = 0.0
    single = numpy.single(0.0)
    
    # 0 bis k
    for i in range(0,k):
        sum = sum + mround(pow(-1,i) / (2.0*i+1),n)
    r = range(0,k)
    
    list.reverse(r) 
    
    # umgekerte Reihenfolge
    for i in r:
        rev_sum = rev_sum + mround(pow(-1,i) / (2.0*i+1),n)
    # single precision 
    for i in range(0,k):
        single = single + numpy.single(pow(-1,i) / (2.0*i+1))
        
    return (sum, rev_sum, single)    
示例21
    def argmax(self, sol, idx, add_loss=False, opt_type='linear'):
        nd = self.feats
        d = 0  # start of dimension in sol
        val = -10.**10.
        cls = -1  # best class

        for c in range(self.num_classes):
            foo = sol[d:d+nd].T.dot(self.X[:, idx])
            # the argmax of the above function
            # is equal to the argmax of the quadratic function
            # foo = + 2*foo - normPsi
            # since ||Psi(x_i,z)|| = ||phi(x_i)|| = y forall z
            d += nd
            if np.single(foo) > np.single(val):
                val = foo
                cls = c
        if opt_type == 'quadratic':
            normPsi = self.X[:, idx].T.dot(self.X[:, idx])
            val = 2.*val - normPsi

        psi_idx = self.get_joint_feature_map(idx, cls)
        return val, cls, psi_idx
示例22
def point_wise_div_sqrt(args, OUT_BUFFER=None, clip=10, gpu_ind=GPU_IND):
	A, B = args
	
	if OUT_BUFFER != None:
		check_buffer(OUT_BUFFER)
		OUT_BUFFER[1] = A[1]
	else:
		OUT_BUFFER = A
	
	_ntm_module3.point_wise_div_sqrt(A[0], B[0], OUT_BUFFER[0], np.single(clip), gpu_ind)
	
	OUT_BUFFER[1] = B[1]
	return OUT_BUFFER
示例23
def spontaneus_amplitudes(alpha, beta1, beta2, epsilon):
    """
    Spontaneous amplitude of fully expanded canonical model

    Args:
        alpha (float): :math:`\alpha` parameter of the canonical model
        beta1 (float): :math:`\beta_1` parameter of the canonical model
        beta2 (float): :math:`\beta_2` parameter of the canonical model
        epsilon (float): :math:`\varepsilon` parameter of the canonical model

    Returns:
        :class:`numpy.ndarray`: Spontaneous amplitudes for the oscillator

    """

    if beta2 == 0 and epsilon !=0:
        epsilon = 0

    eps = np.spacing(np.single(1))

    # Find r* numerically
    r = np.roots([float(epsilon*(beta2-beta1)),
                  0.0,
                  float(beta1-epsilon*alpha),
                  0.0,
                  float(alpha),
                  0.0])

    # only unique real values
    r = np.real(np.unique(r[np.abs(np.imag(r)) < eps]))

    r = r[r >=0]  # no negative amplitude
    if beta2 > 0:
        r = r[r < 1.0/np.sqrt(epsilon)]  # r* below the asymptote only

    def slope(r):
        return alpha + 3*beta1*r**2 + 
            (5*epsilon*beta2*r**4-3*epsilon**2*beta2*r**6) / 
            ((1-epsilon*r**2)**2)

    # Take only stable r*
    ind1 = slope(r) < 0

    ind2a = slope(r) == 0
    ind2b = slope(r-eps) < 0
    ind2c = slope(r+eps) < 0
    ind2 = np.logical_and(ind2a, np.logical_and(ind2b, ind2c))

    r = r[np.logical_or(ind1, ind2)]

    return sorted(r, reverse=True)
示例24
def get_local_context_color(img_ab, px, py, local_context_color_paras, res=None):
    h, w, ch = img_ab.shape[0], img_ab.shape[1], img_ab.shape[2]
    assert ch == 2
    hf_sz, hist_bin_num = 
    local_context_color_paras['half_size'], local_context_color_paras['hist_bin_num']
    xmin = px - hf_sz if (px - hf_sz) >= 0 else 0
    xmax = px + hf_sz + 1 if (px + hf_sz + 1) < w else w
    ymin = py - hf_sz if (py - hf_sz) >= 0 else 0
    ymax = py + hf_sz + 1 if (py + hf_sz + 1) < h else h
    region = img_ab[ymin:ymax, xmin:xmax, :]
    h2, w2 = ymax - ymin, xmax - xmin
    region = region.reshape((h2 * w2, 2))
    
    hist_a, bin_edges_a = np.histogram(region[:, 0], hist_bin_num, range=(-128, 128))
    hist_b, bin_edges_b = np.histogram(region[:, 1], hist_bin_num, range=(-128, 128))
    hist_a = np.single(hist_a) / np.single(h2 * w2)
    hist_b = np.single(hist_b) / np.single(h2 * w2)
#     print 'hist,hist_sum',hist,np.sum(hist)
    if res == None:
        return np.concatenate((hist_a, hist_b))
    else:
        res[:hist_bin_num] = hist_a
        res[hist_bin_num:(2 * hist_bin_num)] = hist_b
示例25
    def argmax(self, sol, idx, add_loss=False):
        nd = self.feats
        mc = self.num_classes
        d = 0  # start of dimension in sol
        val = -10**10
        cls = -1 # best choice so far
        psi_idx = matrix(0.0, (nd*mc,1))

        for c in range(self.num_classes):

            psi = matrix(0.0, (nd*mc,1))
            psi[nd*c:nd*(c+1)] = self.X[:,idx]

            foo = 2.0 * sol.trans()*psi - psi.trans()*psi
            # the argmax of the above function
            # is equal to the argmax of the quadratic function
            # foo = + 2*foo - normPsi
            # since ||Psi(x_i,z)|| = ||phi(x_i)|| = y forall z   
            if (np.single(foo)>np.single(val)):
                val = -sol.trans()*sol + foo
                cls = c
                psi_idx = matrix(sol, (nd*mc,1))
                psi_idx[nd*c:nd*(c+1)] = self.X[:,idx]
        return (val, cls, psi_idx)
示例26
def conv_block(filters, imgs, stride=1, max_el=3360688123): 
	t_start = time.time()
	filters = np.single(filters); imgs = np.single(imgs)
	assert filters.shape[1] == filters.shape[2]
	assert imgs.shape[1] == imgs.shape[2]
	assert imgs.shape[0] == filters.shape[0]
	x_loc = 0
	y_loc = 0
	n_filters = filters.shape[3]
	n_imgs = imgs.shape[3]
	img_sz = imgs.shape[1]
	filter_sz = filters.shape[1]
	in_channels = filters.shape[0]
	output_sz = len(range(0, img_sz - filter_sz + 1, stride))
	filter_temp = filters.reshape((in_channels*filter_sz**2,n_filters)).T.reshape((n_filters,in_channels*filter_sz*filter_sz,1,1,1))	
	
	patches = np.zeros((1, in_channels*filter_sz*filter_sz,output_sz, output_sz, n_imgs),dtype='single')
	for x in range(output_sz):
		y_loc = 0
		for y in range(output_sz):
			patches[0,:,x,y] = imgs[:,x_loc:x_loc+filter_sz, y_loc:y_loc+filter_sz].reshape((1,in_channels*filter_sz*filter_sz,n_imgs))
			y_loc += stride
		x_loc += stride
	
	total_el = (n_filters*in_channels*filter_sz*filter_sz*output_sz*output_sz*n_imgs)
	n_groups = np.int(np.ceil(np.single(total_el) / max_el))
	imgs_per_group = np.int(np.floor(128.0/n_groups))
	#print n_groups
	#print imgs_per_group
	
	output = np.zeros((n_filters,output_sz,output_sz,n_imgs),dtype='single')
	for group in range(n_groups):
		p_t = patches[:,:,:,:,group*imgs_per_group:(group+1)*imgs_per_group]
		output[:,:,:,group*imgs_per_group:(group+1)*imgs_per_group] = ne.evaluate('filter_temp*p_t').sum(1)
	print time.time() - t_start
	return output
示例27
 def temp_parse(temp):
     ntemp = []
     errCount = 0
     for val in temp:
         if val.strip().upper() == "NAN":
             cval = "0"
             errCount += 1
         else:
             cval = val
         try:
             cval = single(cval)
         except:
             cval = -1
             errCount += 1
         ntemp += [cval]
     return (ntemp, errCount)
示例28
def ImportData(output, cols, filterList=[], synList=[]):
    """ Filter list is for adding lambda based filters, synList is for synthetic columns """

    print "Importing Next Step..."
    # ncols=lacpa_adddb(None,cols,header,'',False) # formatted and scaled
    # cols=ncols
    print "Filtering List"
    keepPoints = numpy.array([True] * len(cols.values()[0]))  # only
    for (cFiltCol, cFiltFunc) in filterList:
        keepPoints &= map(cFiltFunc, cols[cFiltCol])
    print "Keeping - " + str((sum(keepPoints), len(keepPoints)))
    keepPoints = [cValue for (cValue, isKept) in enumerate(keepPoints) if isKept]
    for cKey in cols.keys():
        cols[cKey] = numpy.array(cols[cKey])[keepPoints]
    print " Adding columns"
    for (cName, cData) in cols.items():
        output.AddColumn(initCol(cName, cData, None))
    print " Adding Triplets"
    allTrips = getTriplets(cols.keys())
    print allTrips
    for (cName, cCols) in allTrips:
        output.AddColumn(initCol3(cName, cols[cCols[0]], cols[cCols[1]], cols[cCols[2]], None))
    print " Adding Tensors"
    cols["NULL"] = 0 * single(cols.values()[0])
    allTens = getTensors(cols.keys())
    print allTens
    for (cName, cCols) in allTens:
        output.AddColumn(
            initColTens(
                cName,
                cols[cCols[0]],
                cols[cCols[1]],
                cols[cCols[2]],
                cols[cCols[3]],
                cols[cCols[4]],
                cols[cCols[5]],
                cols[cCols[6]],
                cols[cCols[7]],
                cols[cCols[8]],
                None,
            )
        )

    print " Adding synthetic columns"
    for (cName, cFunc) in synList:
        output.AddColumn(initCol(cName, cFunc(cols), None))
    return output
示例29
    def __init__(self, weight_learning_rate=0.2, bias_learning_rate=0.2, weight_momentum=0.5, bias_momentum=0.5,
                 weight_decay=0.0, bias_decay=0.0):

        self.weight_learning_rate = theano.shared(np.single(weight_learning_rate), 'lW')
        self.bias_learning_rate   = theano.shared(np.single(bias_learning_rate), 'lb')

        self.weight_momentum = theano.shared(np.single(weight_momentum), 'mW')
        self.bias_momentum   = theano.shared(np.single(bias_momentum), 'mb')

        self.weight_decay = theano.shared(np.single(weight_decay), 'rW')
        self.bias_decay   = theano.shared(np.single(bias_decay), 'rb')
示例30
def point_wise_mult_bcast2(A, B, scalar=1, OUT_BUFFER=None, gpu_ind=0):
	assert isinstance(gpu_ind,int)
	check_buffer(A)
	check_buffer(B)
	
	assert len(A[1]) > 2
	assert len(B[1]) == 2
	assert A[1][0] == B[1][0]
	assert A[1][1] == B[1][1]
	
	if OUT_BUFFER != None:
		check_buffer(OUT_BUFFER)
		OUT_BUFFER[1] = copy.deepcopy(A[1])
	else:
		OUT_BUFFER = copy.deepcopy(A)
	
	_ntm_module.point_wise_mult_bcast2(A[0], A[1], B[0], np.single(scalar), OUT_BUFFER[0], gpu_ind)